Mathematical Foundations of Support Vector Machine Method and
Application Areas

MATH 490 - GRADUATION PROJECT

2025-2026 FALL SEMESTER

19.01.2026

Supervisor

Author .
. . Assoc. Prof. Dr. OZLEM
Elif Berin YILMAZ DEFTERLI

DEPARTMENT OF MATHEMATICS

(CANKAYA UNIVERSITY



ABSTRACT

This study examines Support Vector Machines mainly from an optimization point
of view. The learning problem is written as an optimization problem, and its primal
and dual forms are discussed. The focus is on how the decision boundary is obtained
through this process. Kernel functions are mentioned only to show how the same
idea can be used for nonlinear problems. Some application areas are briefly noted at
the end.
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1 Introduction

Support Vector Machines (SVMs) are commonly used in supervised learning for clas-
sification problems and are based on an optimization framework with well-specified
mathematical constraints; concepts such as margin maximization, constrained opti-
mization, and duality play a central role in explaining how decision boundaries are
obtained. For this reason, understanding the optimization framework underlying
SVMs is essential for explaining why the method performs well in practice.

The aim of this study is to examine the mathematical foundations of Support
Vector Machines with an emphasis on the optimization process. The primal and dual
formulations of the problem and the associated optimality conditions are discussed
in detail. Kernel methods are introduced only to the extent necessary to explain how
nonlinear problems fit into the same optimization framework.

In addition to the theoretical discussion, brief reference is made to application
areas of SVMs in order to show where the presented mathematical concepts are used

in practice.

1.1 Machine Learning

Machine learning is a data-driven subfield of artificial intelligence that focuses on
algorithms which learn patterns from training data and use this experience to make
decisions or predictions on new, previously unseen data. Fundamentally, learning
processes are categorized into two main branches, supervised and unsupervised learn-

ing, depending on the structure of the data and the nature of the problem at hand

[1].

1.2 Supervised Learning

In supervised learning, which is used for classification and regression problems, a
model is first trained on labeled data. Labeled data, where the correct output value
corresponding to the inputs is known, forms the basis of the training process, and in

this way, the model reduces its error by minimizing its loss function, which measures



the difference between its own predictions and the correct labels; thus, it learns to
improve its prediction accuracy [1, 2]. However, preparing labeled data is costly and
laborious, especially in fields such as law, medicine, and engineering, as it requires
expertise [3-5]. Ome of the fundamental problem types addressed by supervised
learning is classification. In classification problems, the model learns from labeled
training data and predicts a categorical target value, that is, a class, for a new sam-
ple. For example, determining whether a tumor is benign or malignant by analyzing
the symptoms of previous patients can be considered a classification problem |1, 2.
Another fundamental problem type addressed by supervised learning is regression
problems, which aim to express the relationship between inputs and a continuous
(numerical) output using a mathematical model. Through this model, highly accu-
rate predictions can be produced for previously unseen data |1, 2.

The output produced in regression is typically a real-valued number (often within
a problem-specific range); it is used to predict values such as house prices, weather
variables, and traffic flow [6-8|.

In such regression tasks, methods such as decision trees, linear regression, KNN,
and neural networks are commonly used; whereas in classification problems, ap-
proaches such as logistic regression, Naive Bayes, KNN, decision trees, neural net-
works, and SVM are used to assign observations to labeled classes in applications
such as spam detection, sentiment analysis, face recognition, medical diagnosis, credit
risk, and fraud detection [1, 2.

1.3 Unsupervised Learning

Unsupervised learning, which works with unlabeled data, is used to solve problems
such as clustering, density estimation, dimensionality reduction, and outlier detec-
tion by revealing hidden structures and patterns within data [1, 9]. The fact that
the model does not need labeled data is a significant advantage in terms of cost;
however, since there are no labels as in supervised learning, additional validation
methods, such as the Elbow Method or Silhouette Analysis, are needed to evalu-

ate and verify the learning outcomes [10-12]. The K-means algorithm groups data



based on similarity and is widely used for customer segmentation as well as image
segmentation, including medical imaging applications such as isolating tumors and
lesions [13-15]. Hierarchical clustering is another option for segmentation: it can be
used to form customer groups for personalized marketing and to split mixed patient
populations into more consistent groups using diagnostic and biological data [16,
17]. PCA, on the other hand, is not a clustering method; it reduces the number of
variables by projecting high-dimensional data into a lower-dimensional form, which

is often convenient for visualization [18].

2 Support Vector Machines

The derivation and formulations presented in this section follow the MIT Open-
CourseWare SVM lecture [19].

SVM is a powerful algorithm capable of detecting patterns in complex datasets
that cannot be analyzed by simple methods; its core idea was introduced by Vapnik
in 1979 [20]. In machine learning, classification problems are based on dividing
the dataset given as input into predefined classes. In this context, Support Vector
Machines are a classification method that models the separation between data points
belonging to different classes through a geometric approach and performs it via a
hyperplane defined as the decision boundary. Classification is examined separately
as binary classification and multiclass classification; while in multiclass classification
the data are divided into three or more categories, in binary classification the data
are classified into one of two categories [1]. In this study, the working principle of
Support Vector Machines is examined within the framework of binary classification.
In binary classification, the set of values that the model output can take consists
of two elements, and these values are referred to as class labels. Class labels can
be defined, depending on preference, in the form {true, false}, {blue,red}, {0,1},
{+1,—1}. In our study, these class labels are determined as {41, —1}. The + or —

symbols do not have a meaning in terms of positivity /negativity.



In other words, we are interested in estimators of this type;
f:RP = {+1,-1} (2.1)

e D: the number of features (features are the components of the vector repre-

senting an example)

e RP”: the space in which each data point has D real-valued features

Let {(x;,y:)}", denote the training dataset, where x; € R” represents the input

feature vectors and y; € {41, —1} denotes the corresponding class labels [21].

2.1 Decision Boundary

In the SVM algorithm, a decision boundary, which is geometrically a hyperplane, is
defined to classify the data. If the data can be perfectly separated by a linear decision
boundary, it is said to be linearly separable. In two dimensions this boundary is a
straight line, in three dimensions a plane, and in higher dimensions a hyperplane. To
construct this decision boundary, two model parameters are used; the normal vector
w, which defines the orientation of the plane and is positioned perpendicular to the
surface, and the bias term b, which is a scalar value that determines the position of
the plane with respect to the origin. Optimizing these parameters not only separates
the classes but also directly affects the margin width, which influences the model’s
performance. Consider a function f(x). It is a linear function that processes an
input data point x; using the weight vector w and the bias term b learned by the

model [21]. The explicit form of this function is as follows
f(x;) = (w,x;) +b (2.2)

Here, (w,x;) denotes the inner product between the vectors w and x;, which is
equivalent to the matrix product w’x when vectors are represented in column form.
The value taken by this function determines the position of the corresponding

data point in space and its membership to the classes.
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The condition f(x) = 0 represents points that lie exactly on the separating hyper-
plane (decision boundary). Moreover, for a sample (x;,y;), the constraint y; f(x;) > 1
means the point is correctly classified and lies on or outside the margin. Equivalently,
if y; = +1 then f(x;) > 1, and if y; = —1 then f(x;) < —1 [22].

The equation obtained as a result of combining the constraint equations belonging

to the positive and negative classes with the target variables is given below
yi((w,x;) +b) > 1 (2.3)

This equation is the optimization criterion that guarantees each data point is posi-
tioned at least a margin-boundary width away. If we examine it from a geometric
perspective; there is a structure in which the decision boundary is first chosen as
f(x) =0, and then this boundary is expanded in both directions until it touches the
nearest data points belonging to the classes. The contact points where the closest
data points of each class are located are the support vectors. These points form
the planes f(x) = 1 and f(x) = —1 and define the margin boundaries (gutter). As
a result, the decision boundary, which takes them as reference, lies exactly in the
middle of these two parallel auxiliary planes. After the margin boundaries are deter-
mined, the decision for a new vector x follows directly from f(x). A positive output
corresponds to class +1, a negative output corresponds to class —1, and f(x) = 0

indicates that x lies on the decision boundary |21, 23|.

2.2 A Geometric View of the Margin

The success rate of the SVM algorithm tends to increase as the margin width between
the classes increases.

The margin width is defined as the distance between the two margin boundaries
(gutters) and is obtained by projecting the difference vector between a support vector

from the positive class (x, ) and a support vector from the negative class (x_) onto



the unit vector normal to the hyperplane, given by ||TWH’ via the dot product.

w

Margin Width = (x; — x_) (2.4)

[[wl]
Here, the Euclidean norm of the weight vector is defined as ||w|| = y/(w, w), which
is equivalent to vVwTw in matrix form [21].

The reason why we do not use only ||x; — x_|| is that, although this expression
represents the Euclidean distance between two points, this distance is not necessarily
perpendicular to the hyperplanes. The vector (x, — x_) may contain components
that lie along the hyperplane, i.e., components that are not aligned with the normal
direction of the hyperplane, which does not conform to the definition of the margin.
The formula used in our analysis measures only the component of the distance be-
tween the two points that is orthogonal to the hyperplane. When the inner product

operation in the formula used to compute the margin width is carried out, we obtain

Width:< X4) =

(2.5)

For the margin hyperplanes corresponding to the positive and negative classes,

respectively, we have:

(w,xy)+b=1, (w,x_) +b=—1. (2.6)
When these two expressions are substituted into the margin width formula, it can
be seen that the margin width depends only on the norm of the weight vector

Width — (W, x;) — (w,x_) _ (1-=06)—(—-1-0) _ 2 27)

gl [w Wi

In Support Vector Machines, maximizing the margin is equivalent to minimizing
the norm of the weight vector ||w||, since the margin is inversely proportional to this
quantity. Instead of minimizing ||w|| directly, the objective function is formulated in

terms of the squared norm 3 ||w||2. This choice does not alter the optimal solution, as



|w||? is a strictly increasing function of ||w|| for |[w|| > 0. Moreover, ||w||? = wlw is
a quadratic, convex, and everywhere differentiable function, which greatly simplifies
the optimization process [24]. The inclusion of the factor i eliminates the constant
multiplier arising during differentiation, yielding a clean gradient expression. This
formulation ensures both mathematical convenience and the existence of a unique
global optimum under the imposed constraints. If this expression is minimized in an
unconstrained manner, the solution will be w = 0; however, this does not yield a
meaningful separating hyperplane. The objective of the SVM model is not only to
maximize the margin, but also to ensure that each data point lies on the correct side
of the margin and belongs to the correct class. These conditions are enforced through
the constraints added to the optimization problem. The mathematical formulation
of these constraints was presented in subsection 2.1. In the following section, we

examine how the objective function is solved under these constraints |21, 22].

2.3 Constrained Optimization via Lagrange Multipliers and
KKT Conditions

In the previous section, it was stated that the expression 3||w||* must be minimized
under a set of constraints. In order to handle a constrained optimization problem,
the problem must first be reformulated as a single expression. This is achieved by
incorporating the constraints into the objective function, resulting in the primal
formulation of the problem. To include the constraints into the main equation, the
method of Lagrange multipliers is employed. For each data point (x;), the constraints

can be expressed mathematically as follows
yi((w,x;) +0) > 1. (2.8)

In order to fit this equation into the standard optimization form g;(z) < 0, we
rewrite it as
gi(w,b)=1— yi(<w,xi> + b) <0. (2.9)

For each constraint g;(z), a Lagrange multiplier (a;) is introduced, and an L



function, known as the Lagrange function, is constructed [24].
L(w,b,a) = F(x1,x9,...,2,) + Z%‘gz‘(%, Ty ...y Tp). (2.10)
i=1

The function F'(z) represents the objective function, and in our model this func-
tion is 3||w||?. Substituting the available information into the equation, we obtain

the Lagrange (primal) formulation of the SVM algorithm

n

L= %HWHQ_;%[%((w,xi)er) —1]. (2.11)

Lagrange multipliers are weight coefficients assigned to each data point. This
weight represents the extent to which the corresponding data point affects the deci-
sion boundary [22, 23].

In minimization problems with constraints, the best solution point cannot be de-
fined only by the condition that the derivative is zero, as in unconstrained problems.
In such problems, the Lagrange multipliers approach makes the solution process
possible by handling the objective function and the constraints within a common
mathematical structure. In order to understand the activity of the constraints and
the point at which the solution is achieved, the Karush—-Kuhn—Tucker conditions are

used.

2.3.1 Karush—Kuhn—Tucker (KKT) Conditions

2.3.1.1 Stationarity

This condition describes the point at which the gradient of the objective function
and the gradients of the constraints balance each other. In our problem, two oppos-
ing effects are present. While the objective function aims to reduce its value, the
constraints prevent the solution from leaving the feasible region. When the gradient
of the Lagrange function with respect to the primal variables is set to zero, the so-

lution reaches a stable point that satisfies the constraints. First, we take the partial



derivative of the Lagrangian with respect to the weight vector w
oL .
— =W — Y X 2.12
- ; y (2.12)
Setting this derivative equal to zero yields

W = Z QY X (2.13)
i=1

This expression indicates that the weight vector w is determined by the training
samples and depends on their labels and the associated Lagrange multipliers. Next,

we take the partial derivative of the Lagrangian with respect to the bias term b
OL g
— == ay (2.14)

Setting this derivative equal to zero gives the following condition

> aiy; =0 (2.15)
i=1

This constraint plays an important role in the derivation of the dual formulation
[22-24].

2.3.1.2 Primal Feasibility

In SVM optimization, primal feasibility is the KKT condition that checks whether
the solution satisfies the constraints. The decision boundary to be drawn should
not leave any point on the wrong side and should not allow any point to enter the
margin.

The constraint equation is given as follows

yi((w,x;) +b) >1 Vi (2.16)



In order to write this constraint in the standard optimization form, it can be

expressed as
gi(w,b) =1 —y;((w,x;) +b) <0 (2.17)

Most of the points in the dataset are so far from the margin that they do not
have any effect on determining the position of the decision boundary; these points
are called inactive constraints (g; < 0). Points that satisfy the constraints exactly at
the boundary are called active constraints (g; = 0); points that satisfy this condition

are candidates to be support vectors [22-24].
2.3.1.3 Dual Feasibility

The objective function attempts to reduce ||w/||, while the margin constraints defined
for each data point act as a resistance in order to prevent the hyperplane from
shrinking excessively. The multiplier «; represents the magnitude of this resistance;
mathematically, this quantity must be non-negative (a; > 0). If this condition is not
satisfied, the Lagrangian /KKT framework breaks down and the resulting solution no

longer corresponds to the intended maximum-margin problem [22-24].
2.3.1.4 Complementary Slackness

This condition mathematically formalizes the final effect of the points identified in
the Primal Feasibility section on the model. Its mathematical expression is given as

follows:
a; gi(w,b) =0 Vi (2.18)

As stated in primal feasibility, if a data point lies outside the margin, that is, in
the safe region, the constraint function is less than zero (g; < 0). In this case, for the
product to be equal to zero, it must be that a; = 0. Such points do not contribute
to the formation of the decision boundary. If a data point lies on the margin line,
that is, exactly on the boundary, the constraint function is equal to zero (g; = 0). In
this case, a; > 0 may hold, and these points are the support vectors that construct
the decision hyperplane.

As a result of the complementary slackness condition, the constraint term being

zero does not mean that the constraints are ineffective. Instead, it indicates that the
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constraints and the objective function act in balance [22-24].

2.4 Dual Formulation

The SVM optimization problem is usually expressed in two equivalent formulations,
called the Primal and the Dual. In the Primal case, the goal is to find suitable values
for the weight vector w and the bias term b such that the margin between the classes
is maximized. The Dual formulation approaches the same problem from a different
angle by introducing Lagrange multipliers, and the solution depends directly on the
training data rather than on the model parameters. The dual form is obtained by
substituting the optimal values of the primal variables, which are found by differen-
tiating the Lagrangian with respect to w and b and setting the results equal to zero,
into the original equation. In the dual form, optimization becomes dependent on
the dot products of training sample pairs, (x;,%;), which enables working in high-
dimensional feature spaces and provides a mathematical foundation for the kernel
trick [22-24].

2.4.1 Stationary Conditions

The Lagrangian function for the SVM optimization problem is defined as

L(w,b,a) = %HWHZ ~ Y wltwox) +0) — 1], (2.19)

i=1

Expanding the Lagrangian yields
1 - i n
L= 5 <W7W> _Zaiyi(<waxi>) _bZOéiyi‘FZOéi. (220)
i=1 i=1 i=1

To obtain the optimal solution, the partial derivatives of £ with respect to the

primal variables are set to zero

oL -

11



i=1

n

oL
=1

> agy; = 0. (2.24)
=1
19, 22]

2.4.2 Expanding the Weight Vector Norm

In this subsection, the inner product of the weight vector with itself is written in

summation form.

(w,w) = <Z QY Zajijj> . (2.25)
i=1 j=1

n n

(w,w) = Z Z a0y (X, X5) (2.26)

[19]

2.4.3 Eliminating the Weight Vector from the Lagrangian

The term involving the inner product (w,x;) is expressed as
- Z i (W, X;) - (2.27)
i=1
Recalling the derived definition of the weight vector w,

W=, (2.28)
j=1

12



substituting this expression into the term above yields

— Z Q;Y; (Z Oéjijj) * X (229)
i=1 j=1

Applying the distributive property of the dot product, the expression expands into
a double summation o
— Z Z o0y (X5, X) (2.30)
i=1 j=1
Since the dot product is commutative, this expression is equivalent to —w - w =
—|lw||>. Consequently, when combined with the first term of the Lagrangian, the
expression simplifies to

[Fw . (2.31)

[19]

2.4.4 The Final Dual Lagrangian Form

The resulting equation depends solely on the Lagrange multipliers and the dot prod-

ucts of the samples

n n n

Lla) = Z a; — % Z Z @YY (X, X;) (2.32)

i=1 i=1 j=1

In essence, this dual formulation shows us something very practical; to find the
best boundary, we do not actually need to know the exact location of every single data
point in space. Instead, the entire mathematical formulation reduces to how these
points relate to each other through their inner products. This represents a significant
advantage, since it implies that the complexity of the model depends on the number
of samples rather than the dimensionality of the feature space. By expressing the
problem solely in terms of dot products, the computational burden is greatly reduced.
Moreover, this formulation forms the basis of kernel methods, enabling the solution

of non-linear problems through kernel functions without explicitly mapping the data

13



into higher-dimensional spaces [19, 22, 23|.

2.5 From Hard-Margin to Soft-Margin SVM

The formulation discussed so far corresponds to the hard-margin SVM, where the
data are assumed to be perfectly separable. However, in real-world problems, data
are usually noisy and cannot be separated exactly by a single linear boundary. To
overcome this issue, the soft-margin SVM allows some violations of the margin by
introducing slack variables & and a regularization parameter C'. Slack variables &;
basically show how much a data point breaks the margin rule. If {; = 0, that point
is fine and stays outside the margin. If 0 < & < 1, it is still on the correct side
but it falls into the margin. If & > 1, it ends up on the wrong side, meaning it
is misclassified. The parameter C' decides how strict we are about these violations.
When C' is large, the model does not want to allow violations, so it tries hard to
classify the training data correctly (but it can become sensitive to noisy/outlier
points). When C' is small, violations are not punished that much, so the model
prefers a larger margin and becomes more tolerant to noise, even if that means
making a few training mistakes.

The corresponding primal optimization problem becomes

N -
min ol + C;&- (2.33)
subject to

The hinge loss value is simply a way to measure how “good” or “bad” the prediction
is for a given example, and even when the label is predicted correctly, how well the
margin requirement is satisfied. Let f(x) = (w,x) + b. Rearranging the constraint
yif(x;) > 1—=¢&; gives § > 1 — v, f(x;). In addition, since the condition & > 0 must

also be satisfied, & has to meet two lower bounds simultaneously.

14



Since the objective penalizes ) | &, the optimal slack satisfies

& =max (0, 1—y;f(x:)). (2.35)

This expression is exactly the same as the hinge loss.
In the dual formulation, the effect of the regularization parameter C' appears as

an upper bound on the Lagrange multipliers
0<o, <C, i=1,...,n. (2.36)

22]

2.6 Kernels

The dual formulation (2.32) reveals that, in the SVM optimization problem, only the
inner products between samples play a role. In other words, the solution relies on the
relationships among data points rather than writing the parameters directly. This
result is important because it shows that SVM can also solve non-linear problems
using kernel methods. Based on this structure that emerges in the dual formulation,
a non-linear feature transformation ¢(x;) can be defined for each data point x;. In
this case, the inner product terms in the dual SVM, (x;,x;), are expressed instead
as (p(x;), d(x;)). With the kernel method, the data are represented in a higher-
dimensional feature space, and the SVM continues to separate the classes there
using a linear hyperplane. However, when this linear separation is mapped back to
the original input space, the decision boundary takes on a curved (non-linear) form.
The kernel method makes it possible to perform the feature transformation implicitly
by defining a function that quantifies the similarity between two data points. In this

context, a kernel function k(x;,x;) satisfies

k(xi, x5) = (@(x:), D(x;)) (2.37)

15



for some feature map ¢. This technique is known as the Kernel Trick. For the kernel
trick to be valid within the SVM framework, the kernel function must be positive
definite, ensuring that the associated kernel matrix represents a valid inner product
in the feature space. When a kernel is employed, the dual SVM objective function

takes the following form
n 1 n n
ZO[Z‘ — izz:oziajyiyj k?(XZ',Xj) (238)
i=1 i=1 j=1

In this approach, only the inner product terms are replaced by the kernel function,
while the remaining structure of the optimization problem remains unchanged.

To illustrate the use of the kernel method for real-valued data, the mathematical
expressions of commonly used kernel functions are given below.

The linear kernel is given by
k(xi,x;) = (x4, %X;). (2.39)
The polynomial kernel is given by
k(xi, x;) = ((x5,%;) + c)d. (2.40)

where the degree parameter d governs model complexity by setting the polynomial
order of the decision function, and the constant ¢ tunes the weight given to higher-
order components.

The Gaussian, or radial basis function (RBF), kernel is defined as

k(xi,X;) = exp (—M) . (2.41)

202

where o > 0 specifies the kernel width. It governs the rate at which the similarity

value drops as two observations move farther apart.
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Finally, the sigmoid kernel is expressed as
k(x;,x;) = tanh(k (x;,x;) +¢). (2.42)

where k controls the scaling of the inner product and ¢ acts as a shift parameter.
The parameter x influences the sensitivity of the kernel to differences between data
points, while ¢ adjusts the operating region of the function. Although the sigmoid
kernel provides a nonlinear similarity measure, it is not positive semidefinite for
all parameter choices. Consequently, the convexity of the SVM dual optimization
problem is not always guaranteed, and careful parameter selection is required.
These kernel functions are used directly in the dual SVM formulation by replacing

the inner product terms [22].

3 Applications of Support Vector Machines

This section provides a brief overview of several application areas in which Support
Vector Machines have been used. The examples presented below aim to illustrate
how the theoretical framework discussed earlier appears in practical classification
problems.

Here are some representative medical applications of Support Vector Machines.
SVMs have been used with clinical records, such as electronic medical data, to
build prognostic models for cardiovascular conditions and risk prediction using large
datasets [25]. In medical imaging, SVM classifiers have been applied to MRI im-
ages to differentiate between types of tumors based on extracted features [26]. The
use of SVM-based methods for diagnosis and outcome prediction in healthcare has
been discussed in review studies [27]. SVM models have also been used for classifi-
cation tasks involving biomedical text data and structured clinical records [28]. In
medical classification, performance is frequently evaluated using the ROC curve. It
relates sensitivity, meaning how many truly diseased patients are correctly detected,
to the false positive rate, meaning how many truly healthy individuals are incor-

rectly labeled as diseased, as the classification rule is varied. Since SVM outputs
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are not naturally given as probabilities, ROC analysis can be performed by training
several weighted SVM models that put different emphasis on false positives versus
false negatives, producing different operating points on the ROC plot. This idea and
the construction of confidence bands for SVM-based ROC curves have been demon-
strated in a healthcare prediction study, including an application on breast cancer
patients for predicting treatment response [29].

Beyond medical applications, Support Vector Machines have also been used in
image and pattern recognition tasks. In image classification problems, visual data are
represented using feature vectors, and SVM models are applied to separate different
object or pattern classes [23]. Common examples include face recognition and object
classification. In these tasks, SVMs are used to separate visual categories based on
extracted features [30]. These examples show that SVMs can work well for image-
based problems with high-dimensional feature representations.

Support Vector Machines have also been used in text and document classification
tasks. In these problems, documents are represented as high-dimensional feature
vectors, and SVM models are used to assign them to predefined categories, such as
in text categorization and document filtering [31]. This shows that SVMs can be
applied effectively to text data with large feature spaces.

Another application area is security and anomaly detection. In this context, SVM
models are applied to data such as network traffic or system activity in order to detect
unusual behavior. One example is intrusion detection, where SVM-based approaches
are used to separate normal activity from abnormal or suspicious patterns [32|. This
shows that SVMs can be applied when the main goal is to identify deviations from

normal behavior.

4 Conclusion

As a result of this study, it is shown that the SVM decision boundary can be obtained
through a systematic optimization process. Through the derivation of the primal
and dual formulations, it becomes clear how margin maximization and constraints

determine the position of the decision boundary. In particular, the analysis shows
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that the final solution depends on inner products between training samples, which

explains how SVM focuses on the relationships between data points rather than their

explicit coordinates.
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