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Abstract

This graduation project studies epidemic spreading from a game-theoretical perspective and

models it as a zero-sum differential game between the virus and society. The goal of the virus

in this game is to maximize the number of infected individuals. On the other hand, social

entities use control strategies to minimize this number. In this project, epidemic spreading

is not considered from a biological perspective.

The model is described by partial differential equations that capture the evolution of the

epidemic over time. To solve the equations, the Homotopy Perturbation Method is applied.

The solutions obtained can then be used to proceed with numerical solutions.

To determine how well the model fits the actual data, a Python simulation was written

and tested using COVID-19 infection data from Turkey, China, Italy, and Germany. The data

is analyzed using the Oxford Government Response Tracker Stringency Index for COVID-

19 to measure government responses at different points in time. It is clear that control and

infections establish an equilibrium that corresponds to the points of stability in the zero-sum

game model.

The above findings suggest that zero-sum differential games are an appropriate framework

for studying the dynamics of an epidemic, as a strategic struggle can provide insight into

the role of government policy during an epidemic.
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Chapter 1

Introduction

Game theory offers a mathematical framework for analyzing scenarios in which the payoff

of your choice depends not only on what you do, but also on what others do. Game-

theoretic models have been used extensively to analyze strategic behavior in economics,

political science, biology, and social sciences since the pioneering work of von Neumann and

MorgensternNeumann et al. [1944] . One of these models is the zero-sum games, which

represent conflicts where what one side wins is exactly the same as what the other loses.

In the past two decades, classical game theory has been continually generalized to accom-

modate these dynamic, large systems. Specifically, evolutionary game theory and differential

games are designed to study the evolution of strategies with time, seeking equilibrium con-

cepts such as Nash equilibrium and ESS in populations rather than pairsNash [1950]Başar

and Olsder [1982]Smith [1983]. These developments have greatly broadened the field of game

theory, enabling it to study complex systems that evolve over time and are influenced by

many interacting individuals.

The spread of infectious diseases can be considered another example of a complicated sys-

tem. The process of an epidemic contains constant interaction between two opposing factors:

on one side, the spread of a virus, and on the other side, control over this spread. There-

fore, the analysis of an epidemic can be considered a strategic struggle, which makes this

problem another excellent candidate for a game-theoretic approach. The struggle between

the spread and control can be described in a zero-sum game, where an increase in control

strategy effectiveness leads to a decrease in the effectiveness of a pathogen spreadMegahed

and Madkour [2023].
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Based on game theory, especially zero-sum games and their dynamic versions, this project

aims to look into the possibility of applying game theory principles to epidemiological data.

A real-case application using globally available COVID-19 case numbers will be used to

illustrate the possibility of using game theory to make sense of epidemic dynamics. The

dynamics of both the virus and control strategies will be described using a strategic game

framework in order to apply traditional and evolutionary game theory to real data.

The study builds from theory to implementation by translating mathematical models into

computational algorithms that provide simulations showing how strategies and outcomes

evolve over time. This work is meaningful in integrating real epidemic data into game-

theoretic modeling, demonstrating one way in which abstract mathematical concepts can

be adapted to analyze a data-driven problem. In general, the project attempts to bridge

theoretical game theory and applied disease modeling in a way that demonstrates zero-sum

game frameworks can provide meaningful insight into epidemic dynamics in a mathematically

rigorous manner.
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Chapter 2

Literature Survey And Background

2.1 Normal Form Games

A game, in its most elementary form, can be defined in the following way. A game is a

situation in which more than one decision-maker makes his or her decision while having

information about the possible strategies and payoffs of others. Normal form games provide

a mathematical representation of such situations. In the normal form game, the players’

strategies that each is faced with, and the payoff function for each player based on the

decision of each strategy, are defined. It is presumed that this happens at the same time

and that a player does not know the decisions of the other players before he makes his own

decisions. Although this can be considered simplistic, it enables analysis. The normal form

of game theory can often be applied to a one-shot situation or negotiation. However, in

the real world, there exist various forms of processes that relate to societal behavior, which

are carried out in a manner that does not take place within a point in time; an issue that

becomes a key factor during an epidemic. A normal form game can be formally defined as

G = (N, {Si}i∈N , {ui}i∈N),

where N denotes the set of players, Si the strategy set of player i, and ui the corresponding

payoff function. This representation does not aim to capture dynamics, but it provides a

clean baseline for understanding strategic interaction. In this framework, a strategy profile

3



is denoted by

s = (s1, s2, . . . , sn),

which determines the outcome of the game. Each player is assumed to be rational and aims to

maximize their own payoff function ui(s). The strategic interaction arises from the fact that

the payoff of each player depends not only on their own strategy, but also on the strategies

chosen by others. This interdependence is the key feature that distinguishes game-theoretic

models from classical optimization problems. Each player chooses a strategy si ∈ Si in order

to maximize their payoff ui(si, s−i).

2.2 Zero-Sum Games

A zero-sum game represents a special case of a normal form game in which the players have

conflicting interests. In a zero-sum game involving two players, an increase in the payoff

for one player always causes a decrease in the payoff for the other player. However, this

representation suggests that cooperation does not result in mutual benefit. Rather, each

player seeks ways to maximize the mitigation of losses. Therefore, the zero-sum game can

be considered a representation of conflict, rather than a representation of the problem of

coordination. In a two-player zero-sum game, the payoff functions satisfy

u1(s) + u2(s) = 0,

for every strategy profile s. As a modeling tool, zero-sum games are highly desirable because

they incorporate the idea of strategic equilibrium. With regard to pandemics, the game

situation is quite simple: the spread of the virus translates to a loss for the community,

and the effectiveness of control measures implies the loss of capacity by the virus to spread.

Although this game is quite simplistic, it portrays the essence of competition. In the case of

zero-sum games, the strategic problem can be restated as a minimax optimization problem.

One player aims to maximize the payoff, and the other aims to minimize the payoff. This

situation gives rise to the minimax principle.

max
u∈U

min
v∈V

J(u, v) = min
v∈V

max
u∈U

J(u, v)
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Under suitable convexity and compactness conditions, von Neumann’s minimax theorem

guarantees the equality aboveNeumann et al. [1944].

2.3 Nash Equilibrium and Saddle Points

In a strategic context, a question that would naturally arise would be the existence of a

stable state where no player has any reason to alter its play. This is captured through the

definition of a Nash equilibrium. Formally, a Nash equilibriumNash [1950] in a zero-sum

game is a strategy pair (u*, v*) such that

u∗ ∈ argmax
u

J(u, v∗),

v∗ ∈ argmin
v

J(u∗, v).

In zero-sum games, the Nash equilibrium involves saddle points. In this respect, the strategy

of one player is optimal to the strategy of the other player at the saddle point. Moreover, there

are no advantages if they change their strategy. This concept is mathematically modeled as

an inequality in terms of payoffs, although what it represents is simple: both sides are doing

their level best in the circumstances that exist. Such an equilibrium in epidemic control

could be described as the point at which events are in balance in terms of both control and

spread. Too early relaxation of control measures, and an epidemic equilibrium tips in favor

of the epidemic. Excessively strict measures may lead to severe social and economic costs,

with significant social and economic losses. A saddle point equilibrium satisfies

J(u, v∗) ≤ J(u∗, v∗) ≤ J(u∗, v).

At this point, neither side can improve its outcome through unilateral deviation.

2.4 Differential Games

Static models will not be appropriate for cases of dynamic changes, since the strategies

and results are always varying over time. A differential game representsBaşar and Olsder
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[1982] an extension of the static games concept, since for differential games, the state of the

system described is affected by differential equations. In the differential game, the players

influence the dynamic system according to the time-dependent control strategyKaraman

[2010]. In the decision that relies upon the moment in time, the consequences appear in

the current instance; however, more significantly, in the future. It is for this reason that

the differential game is useful in the modeling of epidemic spreading cases because the levels

change gradually. When differential games are set up within a context of a zero-sum game,

the idea of the saddle point can be extended to the dynamic system. These time-specific

points of equilibrium form the basis for the computational model that will be developed in

the next chapter. In differential games, the evolution of the system is governed by a state

equation that depends on the control strategies of the players.

ẋ(t) = f
(
x(t), u(t), v(t), t

)
, with initial condition x(0) = x0.

J(u, v) =

∫ T

0

L
(
x(t), u(t), v(t), t

)
dt.

The objective of each player is to optimize this functional over the time horizon [0,T].
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Chapter 3

Zero-Sum Game, Population Dynam-

ics, And Model Comparison

3.1 The Strategic Duel

A Zero-Sum View of the Pandemic. In contrast to a general game-theoretic notion described

within the previous chapter, this section dwells on a particular framework used for epidemic

modeling. Contrary to the biological explanations of the pandemic, a pandemic is not only a

natural phenomenon but is a product of the interaction of two conflicting forces. From this

viewpoint, the pandemic can be considered as an endless fight between the disseminating

disease and the collective efforts of society. The emergence of the COVID-19 pandemic

is represented as a zero-sum differential game based on the theory devised by Megahed &

Madkour Megahed and Madkour [2023]. In a scenario of a zero-sum game, the objective of

one player is considered as the negation of the other.

For instance, the objective of Player 1 or the Pathogen would be to maximize the existence

triggered by the outcome of the game. Conversely, the objective of Player 2 or Humanity

would be to limit the aforementioned objective. This dynamic is essentially a zero-sum

game. The growth of the virus, for instance, through infections or hospitalization, essentially

captures the loss triggered within society because of the aforementioned growth. Contrary

to the static modeling of the aforementioned games, this dynamic continues to evolve over

time. Each change triggered by the behavior of the aforementioned virus would essentially
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be opposed by society through dynamic adjustments and changes. This would essentially

mean that the value of the aforementioned game or the objective at a point of time would

be triggered by the aforementioned dynamic.

3.2 The Mathematics of Spread Governing through

PDEs

In order to capture the dynamic nature of the dissemination process in the population,

it is not sufficient to describe it using numbers alone, and therefore, Partial Differential

Equations will be employed for its description. Based on the article on the topic by Megahed

and MadkourMegahed and Madkour [2023], instead of describing the virus using the fixed

object concept, it is indeed more appropriate to describe it as a process that changes over

interactions of time and strategies. In this model, the diffusion of the virus is described using

the Infinity Laplacian operator ∆∞. The Infinity Laplacian operator ∆∞ is a mathematical

tool for describing the diffusion of the virus through the network formed by the structure of

modern society. The governing equation of the system is given by

∂Φ

∂t
= ∆∞Φ(x, y, t) + f(x, y, t, u, v).

Here, Φ represents the infection potential within the population. The term ∂Φ
∂t

describes how

this potential changes over time, indicating whether the spread of the virus is accelerating

or slowing. The function f(u, v) models the interaction between human control measures

u and the virus’s replication dynamics v, reflecting the strategic feedback between the two

sides.

3.3 Mathematical Adaptation for Computational Im-

plementation

To make the prepared model suitable for numerical analysis, the analytical solution obtained

using the Homotopy Perturbation Method (HPM)He [1999] is converted to a computational
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form. The resulting series solution used in the simulation is given by:

u(x, t) = e−x + e−3xt+
15

2
e−5xt2 +

217

2
e−7xt3 +

3429

4
e−9xt4

Within the computational framework, each model variable is mapped to a specific dataset

variable for simulation and analysis.

• Strategic resistance (x): mapped to the normalized Stringency Index. Higher

values of x correspond to stronger intervention policies, which reduce the magnitude

of the exponential terms and indicate more effective suppression.

• Time (t): represents the progression of pandemic days and is normalized to remain

within the convergence range of the series solution.

• Outcome u(x,t): represents the theoretical infection risk produced by strategic

interaction, rather than a direct epidemiological count. This interpretation allows the

abstract mathematical solution to be meaningfully connected to observable policy and

infection trends.

3.4 Finding the Saddle Point: The Quest for Balance

In a lot of strategy conflicts, there exists a critical zone where a player has no way of actually

improving his position without finding himself in a worse position than before. This critical

zone in game theory exists at a point known as the Saddle Point Equilibrium. According

to Megahed and Madkour Megahed and Madkour [2023], this equilibrium is defined by the

inequality

J(u∗, v) ≤ J(u∗, v∗) ≤ J(u, v∗).

This represents the state at which an equilibrium is formed between the spread of the virus

and the level of government response. At the equilibrium state, it can be noted that the

level of response must be sufficiently high to prevent the healthcare system from being

overwhelmed by patients, but at a level that would not significantly impact the social-

economic system. Any level of response that is outside the equilibrium state but before the

optimal response level (u < u∗) would render the virus an advantage.
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3.5 Evolution in Action: Replicator Dynamics and

Real-World Data

Replicator dynamics from evolutionary game theory are employed to link the theoretical

model with observable behavior. In this framework, strategies evolve over time analogously

to biological traits, with their prevalence increasing or decreasing based on relative success.

This process is given by the replicator equation

ẋi = xi

[
fi(x)− ϕ(x)

]
.

This modeling approach enables assessments of the impact of various societal behavior pat-

terns—e.g., social distancing or continued usual activity—on their prevalence over time,

based on changing conditions. According to the ever-changing viral strategies in their own

right, societal behaviors in response to the virus will also change in an equal manner. By

accounting for real-world factors such as the Oxford Stringency Index and the number of

daily reported cases, this modeling method connects mathematical concepts of pandemic

patterns to the pandemic experience.
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Chapter 4

Computational Analysis and

Simulation Results

Unlike the preceding chapters, where exemplary emphasis was placed on the theoretical

background and mathematical modeling, this chapter will concentrate on the computational

process of implementing the presented framework as well as discussing the results obtained.

The objective of this chapter shall be to investigate whether the zero-sum differential game

model developed previously can be related to real-world epidemic outbreaks.

4.1 Computational Implementation

To validate the theoretical framework, a Python-based computer simulation was developed.

The mathematical series solution from the previous chapter was applied to real-world data

from the Oxford COVID-19 Government Response Tracker (OxCGRT)Hale et al. [2021]. The

simulation utilized globally available COVID-19 data from the Oxford COVID-19 Govern-

ment Response Tracker (OxCGRT). This dataset provides harmonized indicators for multiple

countries, enabling the application of the differential game theory framework at a global scale

rather than being limited to a single country. For implementation purposes, country-level

time series are treated independently within the same modeling structure, ensuring that the

analysis remains consistent with the assumptions of the zero-sum differential game. Nor-

malization: The ”Stringency Index” (representing Player 2’s strategy u) and ”Confirmed

11



Cases” (representing Player 1’s payoff v) were normalized to the [0, 1] interval to align with

the mathematical domain of the differential game model. Series Application: The HPM se-

riesHe [1999] solution was calculated iteratively for each time step, generating a ”Theoretical

Infection Risk” curve based on the government’s daily stringency level.

4.2 Analysis of Results

The comparative visualization generated by the model overlays the actual infection spread

(empirical data) against the theoretical risk calculated by the zero-sum differential game.

Figure 4.1: Comparison of Actual Infection Spread vs. Theoretical Risk for Turkey (Zero-
Sum Game Model)

The analysis of the resulting graph reveals several key insights regarding the ”Saddle

Point” equilibrium:
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• Equilibrium Phases: During periods when the government response (Stringency

Index)Hale et al. [2021] remained high, the theoretical risk curve and the actual case

growth curve converged and behaved similarly. The implication is that a Saddle Point

Equilibrium, as discussed in section 2.4, had been reached temporarily, since neither

the virus nor society could ultimately maximize or suppress the risk posed by the virus

without total seclusion.

• Strategic Gaps: Differences between the theoretical risk and the actual cases

revealed the time intervals during which the equilibrium has been disrupted. This is

where the strategic advantage arose because the control strategies (u) relaxed ahead of

the reduction in the viral load (v), favoring the viral infection further, resulting in the

next waves. It reinforces the “tug-of-war” dynamic associated with a zero-sum game

illustrated in Chapter 2.

4.2.1 Comparative Case Study: China

Looking into the Chinese case, there are a number of characteristic aspects related to the

Saddle Point equilibrium, mainly caused by the quick actions taken in the early stages.

13



Figure 4.2: Comparison of Actual Infection Spread vs. Theoretical Risk for China (Zero-Sum
Game Model)

• Equilibrium Phases: However, unlike the slow convergence process, there is an

immediate stabilization process in the Chinese scenario. With the sharp increase in

the Stringency IndexHale et al. [2021], there was an immediate drop in the theoretical

transmission risk to zero. After the initial peak, there was an immediate plateau in

the actual cases, showing that there was zero growth in the number of infections.

• Strategic Gaps: There has been a visible gap between the theoretical value and

the number of reported cases because of the accumulation of infections prior to the

effective control measures. However, as the control measures were put in place in their

entirety, the gap was prevented from increasing. This illustrates that the government

intervention of Player 2 has been successful in stabilizing the game environment so as

not to allow the advantage of the Virus growth because the game environment has

been brought to the Saddle point.
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4.2.2 Comparative Case Study: Italy

The Italian case provides evidence that it is not simple to preserve a balance as the growth

rate becomes faster due to the virus’s spread.

Figure 4.3: Comparison of Actual Infection Spread vs. Theoretical Risk for Italy (Zero-Sum
Game Model)

• Equilibrium Phases: During the first wave, the government had stepped up its

efforts, but the reported cases continued to increase, albeit for a short while, before

the rates declined. However, this confirms that though effective mechanisms had been

employed to control the spread, the timing was late considering the massive spread of

the virus. As such, the equilibrium phase took longer to attain.

• Strategic Gaps: In this case, there is a strategic gap if the risk transmission is about

to decrease, but the number of infections has yet to slow down. Thus, this strategic

gap illustrates the delay between the application of these strategies and the generation

15



of their resultant outcomes. From a strategic perspective, this imbalance was formed

by the fact that the applied strategies were mainly reactive instead of being preventive.

After this imbalance is formed, it is difficult to maintain stability.

4.2.3 Comparative Case Study: Germany

The data analysis from the graph for Germany shows the impact of technological intervention

in changing the dynamics concerning the “Saddle Point” as follows:

Figure 4.4: Comparison of Actual Infection Spread vs. Theoretical Risk for Germany (Zero-
Sum Game Model)

• Equilibrium Phases: There is a visible divergence in this equilibrium, unlike

the other scenarios. The equilibrium phases in this case are defined not only by the

restrictions imposed (Stringency Index)Hale et al. [2021] but are further characterized

by the necessity of the vaccine. This shows that the Saddle Point Equilibrium shifted
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from dependence on physical isolation to a new dependence on biological immunity,

allowing Player 2 (Society) to control the spread without indefinite isolation.

• Strategic Gaps: The gaps that appeared in the latter stages clearly indicate that

there has been a shift in the parameters of the game. With the distribution of the vac-

cine developed in GermanyPolack et al. [2020], the “tug-of-war” situation has shifted,

as the control strategy (u) has become more efficient. The existence of these strategic

gaps symbolizes a transition from a containment game to an eradication game.
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Chapter 5

Conclusion

The aim of this research project was to explore whether the intricate dynamics of a pan-

demic could be abstractly represented and solved using game theory as a strategic conflict.

By incorporating key ideas from Normal Form and Differential Games, along with the spe-

cific Zero-Sum PDE approach of Megahed and MadkourMegahed and Madkour [2023], this

research established a connection between theoretical and practical analyses of a pandemic

situation.

The results lead to three main conclusions:

Validity of the Zero-Sum Framework: Modeling the pandemic as a zero-sum game is

a powerful approximation. The antagonistic relationship between viral spread and control

measures creates a competitive structure where ”saddle point” equilibria can be identified

and analyzed.

Importance of Time Dynamics: Static game models fail to capture the evolving

nature of an epidemic. The use of differential games proved essential for understanding how

strategies must adapt continuously over time rather than be made as one-off decisionsBaşar

and Olsder [1982].

Data-Driven Insight: The computational application demonstrated that theoretical

math models are not just abstract constructs but can track real-world epidemiological trends

when fed with accurate policy dataHale et al. [2021].

In summary, this project demonstrates that game theory offers a robust analytical lens for

epidemiology. While a zero-sum assumption is a simplification of biological reality, it provides
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a mathematically rigorous framework for quantifying the relentless strategic struggle between

a pathogen’s drive to replicate and humanity’s effort to survive.
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Appendix A

Appendix

Python code for zero-sum game of population dynamics

1 import numpy as np

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 import sys

5

6 FILE_NAME = r"OxCGRT_compact_national_v1.csv"

7 SELECTED_COUNTRY = ’Turkey ’

8

9 def model_prediction(x, t):

10 u0 = np.exp(-x)

11 u1 = np.exp(-3*x) * t

12 u2 = (15/2) * np.exp(-5*x) * t**2

13 u3 = (217/2) * np.exp(-7*x) * t**3

14 u4 = (3429/4) * np.exp(-9*x) * t**4

15 return u0 + u1 + u2 + u3 + u4

16

17 try:

18 print(f" Reading file ...")

19 df = pd.read_csv(FILE_NAME , low_memory=False)

20 except FileNotFoundError:

21 print(f"\n ERROR: File not found! Check the path: {FILE_NAME}")

22 sys.exit()

23

24 found_columns = [col for col in df.columns if ’StringencyIndex ’ in col]

22



25

26 if not found_columns:

27 print("\n ERROR: No data containing ’StringencyIndex ’ found in the

file!")

28 print("Available Columns:", df.columns.tolist ())

29 sys.exit()

30

31 S_COL = found_columns [0]

32 print(f" Automatically Detected Column: ’{S_COL}’")

33

34 df[’Date’] = pd.to_datetime(df[’Date’], format=’%Y%m%d’, errors=’coerce ’)

35

36 df_analysis = df[

37 (df[’CountryName ’] == SELECTED_COUNTRY) &

38 (df[’Date’] <= ’2021 -04 -30’)

39 ].copy()

40

41 if df_analysis.empty:

42 print(f"\n ERROR: No data found for ’{SELECTED_COUNTRY }’.")

43 sys.exit()

44

45 df_analysis = df_analysis.sort_values(’Date’)

46 df_analysis = df_analysis.dropna(subset =[S_COL , ’ConfirmedCases ’])

47

48 print(" Performing calculations ...")

49

50 days = (df_analysis[’Date’] - df_analysis[’Date’].iloc [0]).dt.days

51 t_val = days / days.max() * 0.1 # Normalize time

52 x_val = df_analysis[S_COL] / 10.0 # Use the newly found column

53

54 cases_actual = df_analysis[’ConfirmedCases ’]

55 cases_norm = (cases_actual - cases_actual.min()) / (cases_actual.max() -

cases_actual.min())

56

57 model_results = np.array ([ model_prediction(x, t) for t, x in zip(t_val ,

x_val)])

58 model_norm = (model_results - model_results.min()) / (model_results.max()

- model_results.min())

59
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60 print(" Plotting graph ...")

61 plt.figure(figsize =(14, 7))

62

63 plt.plot(df_analysis[’Date’], cases_norm , label=’Actual Case Increase

(Data)’, color=’blue’, linewidth =2)

64

65 plt.plot(df_analysis[’Date’], model_norm , label=’Theoretical Transmission

Risk (Zero -Sum Model)’, color=’red’, linestyle=’--’, linewidth =2.5)

66

67 plt.xlim(df_analysis[’Date’].min(), pd.Timestamp(’2021 -04 -30’))

68 plt.title(f"{SELECTED_COUNTRY} - Zero -Sum Game Model Analysis (2020 -

2021)", fontsize =14)

69 plt.xlabel("Date")

70 plt.ylabel("Normalized Value (0-1)")

71 plt.legend(loc=’upper left’)

72 plt.grid(True , alpha =0.3)

73 plt.gcf().autofmt_xdate ()

74

75 plt.show()

76 print(" Process completed.")
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