INTRODUCTION TO CRYPTOGRAPHY

MATH 490 - GRADUATION PROJECT

2025-2026 FALL SEMESTER

Author R b DSupérvz'sor
Bengisu EGIN sst. Prof. Dr. ERKAN

MURAT TURKAN

DEPARTMENT OF MATHEMATICS

CANKAYA UNIVERSITY

1 INTRODUCTION

Cryptography is the study of secure communication techniques that protect
information from unauthorized access. It has evolved from simple classical
methods, like the Caesar cipher which uses basic shifts, to modern public-
key systems that secure global digital data. The security of modern systems,
such as RSA and ElGamal, relies on the computational difficulty of specific
mathematical problems. While RSA is based on the difficulty of factoring
large prime numbers, ElGamal depends on the Discrete Logarithm Problem.
These systems use a public key for encryption and a private key for decryp-
tion, ensuring that only the intended recipient can access the message.

The purpose of selecting this topic stems from a strong personal interest
in the intersection of mathematics and information security. Although I did
not have the opportunity to take a formal elective course in this area during
my undergraduate studies, I became curious about the critical importance of
cryptography in the modern digital world. Therefore, I identified this project
as a stepping stone to explore the intricacies of the field through indepen-
dent study and to elevate my knowledge and understanding in this area to
an academic level.

This project examines the mathematical foundations of cryptography,
including modular arithmetic, Fermat’s Little Theorem, and Fuler’s Totient
Function. It further explores the transition from classical ciphers to modern
algorithms like RSA and ElGamal, providing a comprehensive analysis of
their structures and practical applications.

2 MATHEMATICAL PREREQUISITES

2.1 Modular Arithmetic and Congruence Relations

Modular arithmetic, which is also known as congruence arithmetic, is one of
the key topics in number theory and has a direct impact on cryptography.
Instead of allowing numbers to grow without limit, this approach studies
numerical operations within a fixed range that repeats periodically. This
range is defined by a positive integer called the modulus.

Within this system, integers are grouped according to the remainders
they produce when divided by the modulus. If two integers leave the same
remainder after division by a given integer n, they are considered congruent
modulo n. This idea is written using the notation:

a=b (modn)

What this expression tells us is: the difference between a and b can be
divided by n. In other words, the integer n is a divisor of the value (a — b).
Even though the definition itself is straightforward, it forms the basis of many
algorithms used in modern cryptographic systems.

2.2 Fermat’s Little Theorem

Fermat’s Little Theorem was introduced in the seventeenth century by the
French mathematician Pierre de Fermat. It describes an important rela-
tionship between prime numbers and modular arithmetic and has become a
fundamental tool in both number theory and cryptography. The theorem is
usually stated in two different but closely related forms.

If p is a prime number and a is any integer, then the following congruence
holds:

a’? =a (mod p)

A second version, which is more commonly used in cryptographic appli-
cations, applies when p is a prime and a is coprime to p:

a?'=1 (mod p)

In the example below, this theorem is verified for the values a = 7 and
p =19 (a prime number).
The value of 7%
7?=49=(2x19)+11 =11 (mod 19)
The value of 74:

(7P =11"=121= (6 x19) +7=7 (mod 19)
The value of 78:

(M2 =7"=49=11 (mod 19)
The value of 716:

(7°?=11=121=7 (mod 19)
Final Result (a?™!):

TB=70xT=7x11=7T=(4x19)+1=1 (mod 19)

This result is especially useful in practice because it allows large exponen-
tiation operations to be reduced efficiently using modular arithmetic, which
is essential for encryption systems.

As an example, consider a = 7 and p = 19. Since 19 is a prime number
and gcd(7,19) = 1, Fermat’s Little Theorem predicts that:

7 =1 (mod 19)

By computing powers of 7 step by step and reducing each result modulo
19, the final value indeed becomes 1. This confirms the validity of the theo-
rem for the chosen values and demonstrates how it simplifies large numerical
calculations.

2.3 Euler’s Totient Function and Euler’s Theorem

Leonhard Euler extended Fermat’s ideas by developing a more general theo-
rem that applies to a wider set of integers. Euler’s Theorem plays a central
role in modular arithmetic and is one of the main mathematical foundations
of modern public-key cryptography, especially the RSA algorithm.

Euler’s Totient Function

Euler’s Totient Function, denoted by ¢(n), gives the number of positive
integers smaller than n that are relatively prime to n. Two integers are said
to be relatively prime if their greatest common divisor is equal to 1.

In simpler terms, ¢(n) counts how many integers k satisfy:

1<k<n and gecd(k,n)=1

Euler’s Theorem
If @ and n are positive integers such that ged(a,n) = 1, then the following
congruence always holds:

a?™ =1 (mod n)

Example 1:

Prime number case (n = 37):

Since 37 is a prime number, all integers from 1 to 36 are relatively prime
to it. Therefore, ¢(37) = 36.

Example 2:

Composite number case (n = 35):

When n is a composite number, all numbers less than n are not coprime
to it. List of numbers less than 35 that are coprime to 35:

{1,2,3,4,6,8,9,11,12,13,16,17, 18,19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34}
We obtain:

©(35) = 24

2.4 Primitive Roots and Their Cryptographic Impor-
tance

Primitive roots are used in cryptographic systems such as Diffie-Hellman and
ElGamal for two main reasons.
First, a primitive root produces the maximum possible cycle length when
raised to successive powers modulo a prime. This means that every nonzero
residue modulo p appears exactly once.
Second, although computing powers such as ¢ (mod p) is easy, reversing
the process to find x is extremely difficult. This difficulty is known as the
discrete logarithm problem and forms the basis of security for several modern
cryptosystems.
Let n be an integer and let a be an integer such that ged(a,n) = 1. If the
powers of a modulo n generate all integers that are relatively prime to n,
then a is called a primitive root modulo n.

More formally, a is a primitive root modulo n if:

ordn(a) = ¢(n)
Let us examine primitive roots for the prime p =7 (¢(7) = 6):
For a = 2:
2'=2 2°=4, 2°=1 (mod?7)

The cycle ends after 3 steps (ord7(2) = 3 < 6). Therefore, 2 is not a
primitive root modulo 7.

For a = 3:

31_
32=2
3% =
3t =
3=5

3=1 (mod?7)

All values {1,2,3,4,5,6} are generated (ord;(3) = 6).
Thus, 3 is a primitive root modulo 7.

3 CLASSICAL ENCRYPTION TECHNIQUES

3.1 Monoalphabetic Ciphers (Caesar Cipher)

The Caesar cipher is one of the earliest known encryption methods and is
named after Julius Caesar. It works by shifting each letter of the plaintext
by three positions in the alphabet. for example, during encryption, A would
become D, and during decryption, D would revert to A).

Although it has historical importance, this cipher provides very weak se-
curity. For example, using a shift of three transforms the message “CAESAR
WAS GREAT” into “FDHVDU ZDV JUHDW”.

3.2 Polyalphabetic Ciphers (Vigenére Cipher)

The Vigeneére cipher improves upon simple substitution by using a keyword
that applies different shifts to different letters. This approach was an impor-
tant development in classical cryptography, as it reduced the effectiveness of
basic frequency analysis attacks.

3.3 Hill Cipher

The Hill cipher, developed by Lester S. Hill, was one of the first encryption
schemes to operate on blocks of letters rather than individual characters.
It uses matrix multiplication in modular arithmetic, converting letters into
numbers (A=0, B=1, ..., Z=25) and encrypting them using an invertible key
matrix.

4 MODERN PUBLIC-KEY CRYPTOSYSTEMS

4.1 Merkle-Hellman Knapsack Cryptosystem

The Merkle-Hellman cryptosystem was introduced in 1978 and is one of the
earliest public-key encryption schemes. It is based on the computational dif-
ficulty of the knapsack (subset sum) problem.

The private key consists of a super-increasing sequence, which is easy to
solve. The public key is obtained by transforming this sequence using mod-
ular arithmetic, producing a sequence that appears random.

Encryption is performed by summing selected elements of the public
key, while decryption uses modular inverses and the structure of the super-
increasing sequence. Despite its early success, the system was broken by Adi
Shamir in 1982 and is no longer considered secure.

Super-Increasing Sequence

In a super-increasing sequence, each element is greater than the sum of
all previous elements.

EXAMPLE: ({1, 2, 4, 8, 16, ...}) (powers of 2) or ({2, 3, 7, 15, 31,

Key Generation and Encryption Process

The super-increasing sequence is kept secret and is called the private key.

Using modular arithmetic, the private key is transformed by the sender
into a sequence that appears complex and difficult to solve; this sequence
becomes the public key.

The message is encrypted using the public key.

The resulting ciphertext is the sum of a selected subset of the elements
of the public key.

The receiver, who knows the private key, applies an inverse operation in
modular arithmetic to transform the encrypted sum back into a sum over
the easy-to-solve super-increasing sequence.

In this way, the original message is successfully recovered.

EXAMPLE:

First, we must choose a super-increasing sequence. Each element must
be greater than the sum of all previous elements.

Secret Sequence (5): {2,5,11,22,45}

Modulus (m): A number greater than the sum of the elements in the
sequence must be chosen. (24 5+ 11 + 22 + 45 = 85). Therefore, let us
choose m = 90.

Multiplier (w): A number that is relatively prime to m must be selected
(ged(w, m) = 1). Let us choose w = 31, which is suitable since ged(31,90) =
1.

The public key is generated using the formula “b; = w - s; mod m

31-2=162 (mod 90)
31-5=155=065 (mod 90)
31-11=341=71 (mod 90)
31-22=682=052 (mod 90)

31-45=1395=145 (mod 90)
Public Key (B): ({62,65,71,52,45})

8

Step 2: Encryption

Suppose the message we want to encrypt is “11010” (5 bits).

Plaintext (X): (z1 = 1l,29 = 1,23 = 0,24 = 1,25 = 0)

The ciphertext (C) is the sum of the products of the message bits and
the elements of the public key:

C'=(1-62)+(1-65)+ (0-71) + (1-52) + (0 - 45)

C=624+65+52=179

Our encrypted message, 179, is sent to the receiver.
Step 3: Decryption

The receiver uses w, m, and the super-increasing sequence from the pri-
vate key to decrypt the message.

Finding the Modular Inverse:
First, calculate the modular inverse of w modulo m. From the equation:

31-d=1 (mod 90)

We find w! = 61.
(Check: 31-61 = 1891, 1891 = (21 - 90) + 1 so the remainder is 1, con-
firming that 61 is indeed the modular inverse.)

Calculating the New Target Sum:
The ciphertext (C') is multiplied by the modular inverse:

C'=C-w!modm
C’' =179 - 61 mod 90
C" = 10919 mod 90

10919 -~ 90 = 121 remainder 29
So, C" = 29.

Finding the Subset Sum in the Super-Increasing Sequence:

Now, we need to represent the number 29 using the elements of our secret
super-increasing sequence {2, 5, 11,22, 45}. Using the “greedy” algorithm, we
start from the largest element:

29 > 457 No — Bit 5 =0
29 > 227 Yes +29—-22=7—-Bit4=1
7>117 No—Bit 3=0
7>57Yes - 7—-5=2—>Bit2=1
2>27Yes »2—-2=0—Bit1=1
So the recovered plaintext is 11010.

Arranging the recovered bits in order (1, 2, 3, 4, 5): 11010.
Result: The original message has been successfully recovered.

4.2 RSA Cryptosystem

RSA is one of the most widely used public-key cryptosystems and was intro-
duced in 1977 by Rivest, Shamir, and Adleman. Security is ensured by the
difficulty of factoring two large prime numbers and by keeping these prime
numbers secret. When a sufficiently large key is used, there is no feasible
method to break it.

RSA operates in three main stages: key generation, encryption, and de-
cryption. The correctness of the algorithm relies on Euler’s Theorem and the
condition

e-d=1 (mod p(n))

Start
Input X, Y
Sum = X +Y
Display SUM
End

As long as this relationship holds, the original plaintext can be recovered
correctly after decryption.

10

RSA algorithm processes data in blocks. Each encryption block (that is,
the numerical representation of the plaintext M to be encrypted) must not
exceed a certain limit. This limit is the modulus n used in the RSA system.

For the system to work correctly and securely from a mathematical per-
spective, each plaintext block to be encrypted must satisfy

M < n.

The condition
9 < p < i+
is used to select a secure block size. That is, if the RSA key is k-bit (for
example, 2048-bit), each data block is configured to be smaller than 22018,

Since the blocks are smaller than n, the encryption process remains within
modular arithmetic.

Exponential Encryption Method and Functional Struc-
ture

The fundamental operation of the RSA algorithm is based on two comple-
mentary mathematical processes.
Encryption Process

The plaintext data block M is transformed into ciphertext using the recipi-
ent’s public key exponent e. This operation is performed using the following
modular arithmetic formula:

C'=M° (modn).

Decryption Process

When the encrypted data block C' reaches the recipient, the recipient uses
their private key exponent d to recover the original data. This reverse oper-
ation is defined by the following mathematical expression:

M =C% (mod n).

For a data block satisfying M < n, the encryption and decryption pro-
cesses should yield the original data at the end. This can be expressed as

M =M (modn).

11

When this congruence is satisfied, the operation of the algorithm is con-
sidered correct.

Computational Efficiency

For the practical usability of this system, both the encryption process M*
(mod n) and the decryption process C¢ (mod n) must be completed by com-
puters in a reasonable amount of time, regardless of how large the numbers
involved are.

Irreversibility (Security)

Although the public key parameters e and n are publicly known, computing
the private key d from these values must be computationally infeasible.

Functional Relationship Between the Keys

In RSA, the link between the public and private keys is formed through
Euler’s Totient Function ¢(n). Let

n=p-q,
where p and ¢ are prime numbers. The selection of the keys is based on the
following criteria.
Modular Inverse Relationship

The encryption exponent e and the decryption exponent d are multiplicative
inverses modulo ¢(n). This relationship is expressed by the congruence

ed=1 (mod p(n)).
This also implies that

d=e ' (mod ¢(n)).
Coprimality Condition

For this inverse to exist, the chosen value e must be coprime with ¢(n); that
is, it must satisfy

ged(p(n), ¢) = 1.

12

Parameter | Definition Status | Source
D, q Two large prime numbers | private | Randomly selected
n=p-q Common modulus public | Computed
d(n) (p—1)(g—1) private | Computed
e Public exponent public | Selected (1 < e < ®(n))
d Private exponent private | d = e~ (mod ®(n))

Table 1: RSA Parameters

Encryption and Decryption Stages

Once the necessary numerical conditions are satisfied, the communication
process between users proceeds as follows:

Encryption: The sender (User B) encrypts the message using the re-

cipient’s (User A’s) publicly announced (e,n) key pair. The operation is
performed using the formula:

C' = M° (mod n)

Decryption: The recipient (User A) converts the received ciphertext C
back into the original message using their private key d, which is known only
to them, by performing:

M = C? (mod n)

EXAMPLE :
Step 1: Key Generation

To set up the system, the private and public key components are calcu-
lated as follows:

e Prime Number Selection: Two prime numbers are chosen: p = 17 and
qg=11.

e Modulus Calculation (n): n=p x ¢ =17 x 11 = 187.

e Euler’s Totient Function (¢(n)): ¢(n) = (p—1)(¢—1) = 16 x 10 = 160.

13

e Public Exponent (e) Selection: A value e is chosen such that ged(¢(n),e) =
1. In this example, e = 7 (ged(160,7) = 1).

e Private Exponent (d) Calculation: The private key exponent (d) is
determined such that d = e™! (mod ¢(n)). Since 23 x 7 = 161 =
1 (mod 160), the private exponent is d = 23.

Resulting Keys:
e Public Key: PU = {7,187}
e Private Key: PR = {23,187}

Step 2: Encryption Process

Suppose the plaintext message to be sent is M = 88 (M < 187 condition
is satisfied).

The encryption is performed using the formula:

C' = M° (mod n)
C = 88" (mod 187)

To handle large exponents, modular arithmetic properties are applied:
88" = 88 (mod 187)
88% (mod 187) = 7744 = 77 (mod 187)
88" = 88? x 88% = 77% = 5929 = 132 (mod 187)
Then combining the results:

887 = (88* x 88% x 88') = (132 x 77 x 88) = 11 (mod 187)
The ciphertext C' = 11 is then sent to the receiver.

Step 3: Decryption Process
The receiver uses their private key (d = 23) to perform:

M = C? (mod n)

14

M = 11% (mod 187)

Breaking down the exponentiation using modular arithmetic:

11' = 11 (mod 187)
112 = 121 (mod 187)
11* = 55 (mod 187)

11® = 33 (mod 187)

Then combining the necessary powers to get 11%3:

112 = (11 x 112 x 111 x 118 x 11%) = (11x121 x55%x 33 x33) = 88 (mod 187)

Thus, the original message M = 88 is successfully recovered.

4.3 ElGamal Cryptosystem

The ElGamal cryptosystem, proposed in 1985, is an alternative to RSA and
is based on the discrete logarithm problem rather than integer factorization.
It uses a prime modulus and a primitive root to generate public and private
keys.

Encryption produces a pair of values, while decryption relies on modular
inverses. The mathematical correctness of the system follows from Fermat’s
Little Theorem and basic properties of modular arithmetic.

Within the framework of number theory, let p be a prime number and g
a primitive root modulo p. Given the values of g, a, and p, the process of
finding the integer exponent k in the equation:

¢"=a (mod p)

is called the Discrete Logarithm Problem. In particular, in scenarios where
the modulus p is chosen to be very large, such as 2048 bits, computing k£ with
current algorithms is considered technically infeasible.

The system essentially consists of the following three stages:

15

A. Key Generation Process

A sufficiently large prime number p is selected.

A value g € {1,2,...,p — 1}, which is a primitive root of p, is chosen.

A secret integer k (private key) is selected within the range 1 < k < p—1.

Compute:

y=g¢* (mod p)

Public Key: {p,g,y}
Private Key: k

Encryption Stage

For a message M to be sent (0 < M < p), arandom integer j is generated
for each communication session (random j ensures different outputs). The
ciphertext consists of two components (Cy, Cs):

C, = gj (mod p)

Co=M -3 (mod p)

C. Decryption Process
The recipient uses their private key k to recover the original message
using the mathematical relation:

M =Cy- (CH™ (mod p)
Proof of Correctness:

The reason why the decryption produces the correct result can be demon-
strated using properties of modular arithmetic and Fermat’s Little Theorem:

Co- (CT) ' =(M-¢7) - (¢')" (mod p)
Since y = ¢*, substituting gives:
M- (g") (") rP=M-g" - g7" =M (mod p)

This proof demonstrates the consistency of the system and confirms that
it operates correctly according to the laws of number theory.

Prime: p =19
Primitive root: g =2 (2 is a primitive root modulo 19)

16

Private key: k= 10
Compute public key:
y=2'"" (mod 19)

219 = 1024 =17 (mod 19)

Public Key: {19,2,17}
Private Key: k£ = 10

Encryption:

Message: M = 14

Random integer: j =5

Compute the ciphertext pair (Cq, Cs):

C,=2°=32=13 (mod 19)

Cy=14-17° (mod 19)
Since 17 = —2 (mod 19), we can simplify:

(—2)°=—-32=6 (mod 19)

Co=14-6=84=8 (mod 19)
Ciphertext: (13,8)
Decryption:

Compute:
Ct =13 (mod 19)

13Y=6 (mod 19)

Find the modular inverse of 6 modulo 19, which is 16 (because 6 - 16 =
96 =1 (mod 19)).
Recover the message:

M=Cy-(CH)'=8-16=128=14 (mod 19)

Decrypted message: M = 14, which matches the original message.

17

5 SECURITY ANALYSIS AND COMPARI-
SON

5.1 Comparative Analysis

Feature RSA ElGamal

Mathematical Problem | Integer Factorization Discrete Logarithm Problem

Speed Fast encryption, slower decryption process Similar computational load for both processes
Ciphertext Size Limited by modulus n, similar to plaintext size Consists of two components (Cy, Cy), doubling the size
Nature of Algorithm Deterministic (same input produces same output) | Probabilistic (random j ensures different outputs)

Table 2: Comparison of RSA and ElGamal Cryptosystems

5.2 Cryptanalytic Attacks

Analysis of Attacks and Threats Against Cryptographic Systems

The security of both classical and modern encryption methods is evalu-
ated based on their resilience to various attack vectors. Below are the primary
attack types and the current standing of cryptographic systems against these
threats:

1. Brute-Force Attacks

This method is like trying every possible combination to open a locked
safe. Modern encryption keys (like 2048-bit keys) are so long that it would
take current computers thousands of years to try every possibility. Therefore,
it is considered computationally “impossible” for now.

2. Frequency Analysis and Statistical Approaches

In traditional methods (like the Caesar cipher), messages were cracked
by looking at which letters appear most often (for example, ‘e’ is the most
common letter in English).

Modern “block ciphers” scramble data so thoroughly (through processes
called diffusion and confusion) that no statistical patterns or clues are left
behind for attackers to use.

18

3. Mathematical Vulnerabilities (The Knapsack Case)

Some encryption systems are built on mathematical problems that are
assumed to be difficult to solve. If someone discovers a “shortcut” or a math-
ematical weakness in that underlying problem, the system fails. A famous
example is the Merkle-Hellman Knapsack system; it was abandoned after
researchers found a mathematical way to bypass its structure in 1982.

4. The Discrete Logarithm Problem (DLP)

The security of systems like ElGamal is rooted in a specific math problem:
finding x in the congruence

g =y (mod p).

Finding the value of z (the private key) is like looking for a needle in a
haystack when dealing with massive prime numbers. As long as there is no
fast way to solve this discrete logarithm, the system remains secure.

5. The Quantum Threat (Shor’s Algorithm)

The biggest future risk comes from quantum computing. An approach
called Shor’s Algorithm, running on a powerful quantum computer, could
solve the math problems behind RSA and ElGamal almost instantly. This is
why experts are currently developing quantum-resistant algorithms to pre-
pare for the future.

19

6 Conclusion

Modern cryptography is deeply rooted in number theory. Concepts such as
modular arithmetic, prime numbers, Euler’s Totient Function, and primitive
roots form the mathematical foundation of secure communication systems.
While classical ciphers illustrate the historical development of encryption,
modern algorithms like RSA and ElGamal demonstrate how these mathe-
matical ideas are applied in real-world security systems. As a continuation of
this work, I aim to gain knowledge on quantum-resistant algorithms against
emerging quantum technologies that threaten current encryption systems and
to pursue my learning process in this field.

20

References

Burton, D. M. (2011). Elementary Number Theory (7th ed.). McGraw-
Hill Education.

Stallings, W. (2003). Cryptography and Network Security: Principles and
Practices (3rd ed.). Prentice Hall.

Stallings, W. (2017). Cryptography and Network Security. Pearson Edu-
cation.

Rivest, R., Shamir, A., & Adleman, L. (1977). A method for obtain-
ing digital signatures and public-key cryptosystems. Communications of the
ACM.

Wikipedia contributors. ...RSA Cryptosystem.
Wikipedia contributors. Caesar Cipher.

Wikipedia contributors. Hill Cipher.

21

	INTRODUCTION
	MATHEMATICAL PREREQUISITES
	Modular Arithmetic and Congruence Relations
	Fermat’s Little Theorem
	Euler’s Totient Function and Euler’s Theorem
	Primitive Roots and Their Cryptographic Importance

	CLASSICAL ENCRYPTION TECHNIQUES
	Monoalphabetic Ciphers (Caesar Cipher)
	Polyalphabetic Ciphers (Vigenère Cipher)
	Hill Cipher

	MODERN PUBLIC-KEY CRYPTOSYSTEMS
	Merkle–Hellman Knapsack Cryptosystem
	RSA Cryptosystem
	ElGamal Cryptosystem

	SECURITY ANALYSIS AND COMPARISON
	Comparative Analysis
	Cryptanalytic Attacks

	Conclusion

