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Abstract
In this study, we investigate the mathematical principles that underpin su-
pervised learning methodologies and their real-world applications in disease
modeling, with a specific emphasis on predicting measles cases. We imple-
ment and compare several regression-based models, including linear regres-
sion, polynomial regression, random forest, and XGBoost models, to evaluate
their performance against historical measles incidence data and to assess their
effectiveness in forecasting future disease outbreaks. Our results emphasize
both the strengths and limitations of each model. The results illustrate the
challenges inherent in modeling noisy, real-world disease data while highlight-
ing the advantages and disadvantages of each method from both predictive
and theoretical perspectives. This study aims to emphasize a deeper under-
standing of how mathematical principles support the use and performance of
supervised learning algorithms in disease modeling for measles cases.

Keywords: Supervised Learning, Mathematical Foundations, Compare
Models, Disease Modeling, Time Series Forecasting, Regression Analysis,
Measles, XGBoost, Random Forest, Polynomial Regression, Linear Regres-
sion
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1 Introduction

1.1 Motivation and Research Objectives

Greater access to large datasets and advances in computational methods have
transformed the field of disease modeling [1]1 However, it brings challenges
in analyzing large datasets. With the help of Supervised learning techniques,
which allow for the prediction of outcomes grounded on historical data, these
tools have become essential in epidemiology for forecasting disease incidence
and supporting public health decision-making.[2]2This is the prior motivation
for this study. Measles is an infectious illness brought on by a contagion.
Although it is a disease that can be prevented by vaccination, it spreads
easily when someone who is infected coughs, breathes, or sneezes. It can
lead to serious illness, complications, and potentially death. Measles remains
to pose influential public health challenges worldwide due to factors such as
variability in vaccination scope and occasional outbreaks. Accurate modeling
and prediction of measles case counts can prop in resource allocation, early
warning systems, and plan targeted interventions.[3] 3.

This study examines the mathematical foundations of several supervised
learning methods, including Linear Regression, Polynomial Regression, Ran-
dom Forest, and XGBoost. It applies them to the problem of disease mod-
eling using real-world measles case data. The study is not limited to imple-
mentation but also emphasizes the comparative evaluation of these models
in a time-series forecasting context.

The primary objectives of this work are as follows:

• To provide a comprehensive mathematical background for each super-
vised learning algorithm.

• To implement and compare these models using historical measles inci-
dence data.

• To evaluate the performance of each supervised learning method in
terms of predictive accuracy, interpretability, and suitability for epi-
demiological forecasting.

1X. Li, J. Qiu, L. Lin, and B. Yin, "Machine learning in epidemiology: applications
and challenges"

2A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui,
G. Corrado, S. Thrun, and J. Dean, "A guide to deep learning in healthcare"

3Who measles data
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• To discuss practical considerations in modeling time series data, in-
cluding the incorporation of lag features.

• To forecast future measles case numbers (e.g., 2027) and analyze model
strengths and weaknesses.

1.2 Overview of Supervised Learning in Disease Mod-
eling

Supervised learning has become a robust method in predictive analytics,
allowing the development of models that correlate input features with target
outputs using labeled training data. When supervised learning techniques
applied to disease modeling, these methods facilitate the learning of historical
epidemiological trends and the prediction of future developments, which in
turn guides public health policy and intervention strategies.[1]4 [2]5 [4]6

Regression-based supervised learning algorithms are particularly valuable
for modeling continuous variables, such as disease incidence counts. Linear
regression provides a straightforward and easy-to-understand method ap-
proach based on the connection of a linear relationship between predictors
and the outcome. In contrast, polynomial regression improves this model by
representing non-linear patterns through the inclusion of higher-order terms.
Furthermore, ensemble methods like Random Forest [5]7 and gradient boost-
ing techniques, such as XGBoost [6]8, employ several decision trees to en-
hance predictive accuracy and robustness.

Consider for temporal relationships is crucial when implementing super-
vised learning techniques to time-series disease modeling. One common ap-
proach involves the use of lag features—past observations used as input for
current predictions—which help capture underlying temporal patterns more

4X. Li, J. Qiu, L. Lin, and B. Yin, Machine learning in epidemiology: applications and
challenges

5A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui,
G. Corrado, S. Thrun, and J. Dean, "A guide to deep learning in healthcare"

6D.Bzdok "statistics versus machine learning"
7L. Breiman, "Random forests"
8T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system"
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effectively.[7]9 [8]10 , [9]11

Despite the natural noise and inconsistencies present in actual health
data, these methods have reliably shown robust performance in different
epidemiological contexts, which includes forecasting infectious disease out-
breaks.

1.3 Structure

This study is structured to progressively develop both the theoretical and
experimental aspects of supervised learning methods applied to disease mod-
eling for measles cases.[10]12[3] 13 The chapters are organized as follows:

• Chapter 1 Introduces the research motivation, objectives, and pro-
vides a brief overview of supervised learning in the context of epidemi-
ology.

• Chapter 2 Presents the mathematical foundations of the selected su-
pervised learning algorithms, including linear regression, polynomial
regression, random forest, and XGBoost, along with commonly used
assessment measures such as Mean Squared Error (MSE) and the co-
efficient of determination (R²).

• Chapter 3 Describes the dataset utilized in this research. Including its
source and the preprocessing steps applied. Details the implementation
of each model, the use of lag features for time series considerations,
model evaluation, and comparison of predictive performances. This
chapter also includes forecasting of future measles cases (e.g., for the
year 2027).

• Chapter 4 Wraps up the study by summarizing the main findings.

This research provides an in-depth understanding of the mathematical foun-
dations of supervised learning models and their applications in real-world
disease prediction scenarios.

9Box, G.E.P., Jenkins, G.M., Reinsel, G.C., and Ljung, G.M. (2015)"Time Series Anal-
ysis: Forecasting and Control"

10P. J. Brockwell and R. A. Davis."Introduction to Time Series and Forecasting"
11Hyndman, R.J., Athanasopoulos, G. (2018) "Forecasting: Principles and Practice"
12T. Hastie, "The Elements of Statistical Learning: Data Mining, Inference, and Pre-

diction"
13Who measles data
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2 Mathematical Foundations of Supervised Learn-
ing

This section provides an overview of the supervised learning methods used
in this study. Each algorithm will be presented along with its mathematical
formulation and underlying assumptions. We also present the evaluation
metrics utilized to assess their performance.

2.1 Linear Regression

Linear regression is one of the most fundamental and widely used regression
techniques. It assumes a linear correlation between the predictor (indepen-
dent) variable and the response (dependent) variable. By reducing the sum
of squared residuals, it determines the coefficients that best fit the data. Lin-
ear regression is especially effective when the relationship among variables is
linear and there are no significant outliers [11]14.

The equation of the regression line can represent the model:

ŷi = β0 + β1ki, (2.1)

where ki ∈ R is the independent variable (predictor), and ŷi ∈ R is the
predicted value of the dependent variable (response).

2.1.1 Model Parameters and Sample Means

To compute the parameters β0 and β1, we use the sample means and covari-
ances:

• ŷi is the predicted value of the response variable,

• β1 =
Sky

Skk
=

∑
(ki−k̄)(yi−ȳ)∑

(ki−k̄)2
=

∑
kiyi−

∑
ki

∑
yi

n∑
k2i−

(
∑

ki)
2

n

,

• β0 = ȳ − β1k̄,

• k̄ =
∑

ki
n

, ȳ =
∑

yi
n

,

14A. Hasudungan, "A Comprehensive Analysis of Regression Algorithms in Machine
Learning"
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where n is the number of observations [12]15.
The underlying statistical model assumes a linear relationship with an

error term ϵ accounting for the deviation:

yi = β0 + β1ki + ϵi, (2.2)

where ϵi ∼ N (0, σ2) is assumed to be i.i.d. noise [13]16.
In linear regression models, the error terms ϵi are commonly assumed to

be independently and identically distributed (i.i.d.) random variables. This
implies two key statistical properties:

• Independence: Each error term ϵi is statistically independent from
others, i.e., ϵi ⊥ ϵj for i ̸= j.

• Identical Distribution: All error terms follow the same probability
distribution, typically assumed to be Gaussian with zero mean and
constant variance: ϵi ∼ N (0, σ2).

2.1.2 Least Squares Estimation

The Ordinary Least Squares (OLS) technique makes estimates regarding the
coefficients β0 and β1 with reducing the Residual Sum of Squares (RSS),
which defined as:

RSS(β0, β1) =
n∑

i=1

(yi − β0 − β1ki)
2.

Let the residual be ei = yi − ŷi. Then,

ei = yi − (β0 + β1ki).

To find the optimal parameters, we take partial derivatives of RSS with
respect to β0 and β1 and set them to zero:

∂RSS

∂β0

= −2
n∑

i=1

(yi − β0 − β1ki) = 0,

15Newcastle University, “Simple Linear Regression”
16Statstutor, “Simple Linear Regression”
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∂RSS

∂β1

= −2
n∑

i=1

ki(yi − β0 − β1ki) = 0.

Solving this system gives the least squares estimators:

β1 =

∑
(ki − k̄)(yi − ȳ)∑

(ki − k̄)2
, β0 = ȳ − β1k̄.

The Ordinary Least Squares (OLS) estimators provide the Best Linear Unbi-
ased Estimators (BLUE) of the regression coefficients under the classical lin-
ear regression assumptions, including linearity, independence, and normality
of errors [10]17 [14]18 [15]19. While these assumptions hold well for linear re-
gression, more complex supervised learning methods such as Random Forest
and XGBoost do not rely on BLUE properties but instead optimize predic-
tion accuracy via different approaches. Hence, BLUE is primarily relevant
in the mathematical foundation of linear regression models.

2.2 Polynomial Regression

Polynomial regression is built upon linear regression by incorporating poly-
nomial terms to represent non-linear interactions between variables more
effectively. Polynomial regression approach offers enhanced flexibility for
modeling complex data patterns. However, it may be sensitive to overfitting,
particularly with high-degree polynomials. Therefore, it is crucial to apply
regularization techniques to address this problem.[11]20 Polynomial regres-
sion models the relationship between a scalar predictor variable z and the
response variable y as an n-th degree polynomial:[10]21

ŷ = b0 + b1z + b2z
2 + · · ·+ bnz

n =
n∑

i=0

biz
i[13]22

17T. Hastie, "The Elements of Statistical Learning: Data Mining, Inference, and Pre-
diction"

18D. C. Montgomery, E. A. Peck, and G. G. Vining,"Introduction to Linear Regression
Analysis"

19W. H. Greene,"Econometric Analysis"
20A. Hasudungan, "A Comprehensive Analysis of Regression Algorithms in Machine

Learning"
21T. Hastie, "The Elements of Statistical Learning: Data Mining, Inference, and Pre-

diction"
22Statstutor, “Simple Linear Regression”
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The goal is to reduce the Residual Sum of Squares (RSS):

RSS =
m∑
i=1

(yi − ŷi)
2 =

m∑
i=1

(
yi −

n∑
j=0

bjzij

)2

This can be represented using matrix notation as:

Z =


1 z1 z21 · · · zn1
1 z2 z22 · · · zn2
...

...
... . . . ...

1 zm z2m · · · znm

 , y⃗ =


y1
y2
...
ym


Then, the optimal coefficient vector b⃗ that minimizes the standard equa-

tion gives the squared error:

b⃗ = (Z⊤Z)−1Z⊤y⃗ [16]23

This closed-form solution is identical to the one utilized in linear regression,
where polynomial terms are considered separate features.

2.3 Random Forest Regression

Random forest regression is a group technique that merges several decision
trees to produce forecasts. By averaging the predictions made during training
along with outputs from each of the individual trees, random forest regres-
sion declines overfitting and enhances prediction accuracy. Even, it offers
measures of feature importance, facilitating variable selection. Nevertheless,
random forest regression can experience significant computational demands
and may lack interpretability. [5]24.

ŷ =
1

M

M∑
m=1

Tm(x)

where Tm(x) is the prediction of the m-th regression tree.
This method is especially effective in managing high-dimensional datasets

and capturing non-linear relationships without requiring extensive hyperpa-
rameter tuning.

23C. E. Rasmussen and C. K. I. Williams, "Gaussian Processes for Machine Learning"
24L. Breiman, "Random forests"

13



2.4 XGBoost Algorithm

XGBoost (Extreme Gradient Boosting) is a scalable and regularized gradient-
boosting framework designed for high performance and efficiency [6]25. It
builds models in an additive fashion, optimizing a regularized loss function:

ŷi =
M∑

m=1

fm(mi), fm ∈ F

where F is the space of regression trees. The overall objective function
is defined as:

L =
n∑

i=1

l(yi, ŷi) +
m∑

m=1

Ω(fm)

with a regularization term Ω(fm) = γT + 1
2
λ∥w∥2 to control model com-

plexity and prevent overfitting.

2.5 Evaluation Metrics (MSE, R²)

To evaluate the effectiveness of regression models, the subsequent metrics are
commonly used [10]26:

• Mean Squared Error (MSE):

MSE =
1

k

k∑
j=1

(yj − ŷj)
2[17]27

where yj is the actual value, ŷj is the predicted value, and n is indicates
the count of observations. A lower MSE signifies greater predictive ac-
curacy, as it penalizes larger errors more heavily.

25T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system"
26T. Hastie, "The Elements of Statistical Learning: Data Mining, Inference, and Pre-

diction"
27Yu, W., Song, W., Xue, B., Zhang, M. (2023). "Surrogate-assisted Multi-objective

Optimization via Genetic Programming Based Symbolic Regression"
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• Coefficient of Determination (R2):

R2 = 1−
∑k

j=1(yj − ŷj)
2∑k

j=1(yj − ȳ)2
[17]28

where ȳ is the mean of the actual values. R2 computes the proportion of
variance in the predictor variable y that is predictable from the response
variable. An R2 value that approaches 1 signifies a more accurate fit.

28Yu, W., Song, W., Xue, B., Zhang, M. (2023). "Surrogate-assisted Multi-objective
Optimization via Genetic Programming Based Symbolic Regression"
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