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1 Introduction

The study of boundary problems is a fundamental aspect of mathematical
analysis, with applications spanning physics, engineering, and computa-
tional science. These problems arise when determining solutions to differ-
ential or difference equations that satisfy specific conditions at the bound-
aries of a domain. Broadly, boundary problems can be classified into two
categories: discrete and continuous. Discrete boundary problems involve
systems described by recurrence relations, whereas continuous boundary
problems are governed by differential equations.

In discrete boundary problems, the system consists of a finite or infinite
sequence of entities interacting according to specified rules. These prob-
lems are often represented by recurrence relations, which provide powerful
tools for understanding the behavior of systems with discrete structures.
On the other hand, continuous boundary problems involve differential
equations that describe systems with continuous variables, often represent-
ing smooth transitions in physical or mathematical contexts. Despite their
apparent differences, discrete and continuous boundary problems share
profound mathematical connections, and many techniques developed for
one domain find analogs in the other.

One of the key goals in the study of boundary problems is to explore
these connections and develop unified frameworks that incorporate both
discrete and continuous perspectives. For example, the behavior of a
vibrating string can be modeled using a differential equation when the
string’s density is continuous or by a recurrence relation if the string is
modeled as a series of discrete masses. In both cases, boundary conditions,
such as fixed ends or free vibrations, play a crucial role in determining the
system’s behavior.

A central theme in this field is the exploration of spectral properties,
which involve analyzing the eigenvalues and eigenfunctions associated with
boundary problems. These properties reveal critical insights into the sta-
bility, oscillatory behavior, and resonance phenomena of the system. The
interplay between discrete and continuous methods becomes especially im-
portant in spectral analysis, as many discrete problems serve as approxi-
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mations to their continuous counterparts, and vice versa.
The primary focus of this project lies in the analysis of boundary prob-

lems for discrete systems, specifically those that serve as discrete analogs
of classical Sturm-Liouville theory. This theory, central to the study of
boundary problems, deals with second-order linear differential equations
and their associated eigenvalues and eigenfunctions. The discrete coun-
terpart extends this framework to recurrence relations, emphasizing their
oscillatory properties, orthogonality conditions, and spectral functions.

In the discrete setting, recurrence relations form the foundation for un-
derstanding boundary problems. These relations, often expressed in the
form:

yn+1 − 2yn + yn−1 + λwnyn = 0, (1)

where yn represents the sequence of interest, wn is a weight function, and λ
is the spectral parameter, provide a structured way to study the system’s
behavior. Such relations encapsulate the discrete analogs of continuous
differential equations and allow for detailed spectral analysis.

One significant aspect of this analysis involves investigating the oscil-
latory nature of solutions. The number of zeros of the solutions, or their
oscillation count, is directly related to the corresponding eigenvalues, a
property mirroring the behavior in continuous Sturm-Liouville theory. Ad-
ditionally, the orthogonality of eigenfunctions plays a critical role, enabling
the expansion of arbitrary sequences in terms of the system’s eigenfunc-
tions, akin to Fourier series in the continuous domain.

Spectral functions further enrich this study by providing a comprehen-
sive description of the system’s behavior. These functions, which encap-
sulate the distribution of eigenvalues, are crucial for understanding the
resonance and stability properties of the system. The analysis of spectral
functions for discrete systems not only parallels that of continuous systems
but also highlights unique features that arise in the discrete framework.

This project delves deeply into the mathematical properties and appli-
cations of these discrete boundary problems. By building on the foun-
dational principles of Sturm-Liouville theory, it seeks to uncover possibly
new insights and extend existing methods to tackle more complex sce-
narios. The discrete perspective, while inspired by continuous analogs,
provides a distinct approach that enriches the overall understanding of
boundary problems and their spectral properties.
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2 Finite Orthogonal Polynomials

2.1 The Recurrence Relation

We take up here boundary problems of Sturm-Liouville type associated
with the recurrence formula

cnyn+1 = (anλ+ bn)yn − cn−1yn−1, n = 0, . . . ,m− 1, (2.1.1)

where the an, bn, and cn are real scalars, subject to

an > 0, cn > 0. (2.1.2)

A boundary problem is given if we ask for sequences y−1, . . . , ym con-
nected by this relation, not all zero, and satisfying the boundary conditions

y−1 = 0, ym + hym−1 = 0, (2.1.3)

where h is some fixed real number.
That this is a problem of eigenvalue type, soluble only for isolated val-

ues of λ, is easily seen if we construct a typical solution, that is to say, a
sequence satisfying (2.1.1) and the first of the boundary conditions (2.1.3),
and not vanishing throughout. We must, of course, take y0 ̸= 0, since oth-
erwise by (2.1.1) y1 = 0, y2 = 0, . . ., and the sequence vanishes identically.
It will be convenient to define a standard solution

y−1(λ), y0(λ), y1(λ), . . . , ym(λ), (2.1.4)

of (2.1.1) with the fixed initial conditions

y−1(λ) = 0, y0(λ) = 1/c−1 > 0. (2.1.5)

Now that we have fixed y−1(λ), y0(λ), the values of y1(λ), y2(λ), . . . are
to be found successively from (2.1.1). For n ≥ 0, it is evident that yn(λ)
is a polynomial of degree precisely n. We can now say that the remaining
boundary condition in (2.1.3) will be satisfied if

ym(λ) + hym−1(λ) = 0. (2.1.6)

The roots of this equation, the eigenvalues, are thus the zeros of a poly-
nomial of degree m. For if (2.1.6) holds, the sequence (2.1.4) certainly
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satisfies the conditions (2.1.1), (2.1.3) of the boundary problem, without
vanishing identically; conversely, it is easy to prove that any solution of
(2.1.1) and (2.1.3), not vanishing identically, must be a sequence propor-
tional to (2.1.4) for such a λ-value.

In showing that the eigenvalues of our boundary problem are the ze-
ros of certain polynomials we begin to approach the theory of orthogonal
polynomials. It is not immediately apparent that the polynomials (2.1.4)
defined by (2.1.1) and (2.1.5) have any orthogonality properties.We are
here considering only the orthogonality of finite sets (2.1.4).

2.2 Lagrange-Type Identities

We have first the following theorem.
Theorem 2.1.1. For 0 ≤ n < m,

(λ− µ)
m∑
n=0

anyn(λ)yn(µ) = cn

∣∣∣∣yn+1(λ) yn+1(µ)
yn(λ) yn(µ)

∣∣∣∣ . (2.2.1)

Proof: The proof is by induction. We write the recurrence relation for
the two arguments in full, giving

cnyn+1(λ) = (anλ+ bn)yn(λ)− cn−1yn−1(λ),

cnyn+1(µ) = (anµ+ bn)yn(µ)− cn−1yn−1(µ).

Subtracting these two equations, we have

cn
(
yn+1(λ)yn(µ)− yn+1(µ)yn(λ)

)
= an(λ− µ)yn(λ)yn(µ)

+ bn
(
yn(λ)yn(µ)− yn(µ)yn(λ)

)
+ cn−1

(
yn−1(µ)yn(λ)− yn−1(λ)yn(µ)

)
.

Simplifying, we obtain

cn
(
yn+1(λ)yn(µ)− yn+1(µ)yn(λ)

)
= an(λ− µ)yn(λ)yn(µ)

+ cn−1

(
yn(λ)yn−1(µ)− yn(µ)yn−1(λ)

)
.

(2.2.2)
Now, let n = 0 and recalling that y−1(λ) = y−1(µ) = 0, we derive (2.2.1)
with n = 0. We’re going to use induction over n then yields (2.2.1) from
(2.2.2) in the general case. We aim to prove the identity

cn
(
yn+1(λ)yn(µ)− yn+1(µ)yn(λ)

)
= (λ− µ)

n∑
k=0

akyk(λ)yk(µ).

This will be done using mathematical induction.
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Base Case (n = 0)

For n = 0, the identity becomes

c0
(
y1(λ)y0(µ)− y1(µ)y0(λ)

)
= (λ− µ)a0y0(λ)y0(µ).

From the recurrence relation, we get

c0y1(λ) = (a0λ+ b0)y0(λ), c0y1(µ) = (a0µ+ b0)y0(µ).

We substitute this into the determinant

c0
(
(a0λ+ b0)y0(λ)y0(µ)− (a0µ+ b0)y0(µ)y0(λ)

)
.

Expanding and simplifying the expression

c0
(
y1(λ)y0(µ)− y1(µ)y0(λ)

)
= c0

(
a0(λ− µ)y0(λ)y0(µ)

)
.

Canceling c0 then we have

(λ− µ)a0y0(λ)y0(µ).

Thus, the base case is verified.

Induction Hypothesis

Assume that the identity holds for n = m

cm
(
ym+1(λ)ym(µ)− ym+1(µ)ym(λ)

)
= (λ− µ)

m∑
k=0

akyk(λ)yk(µ).

Induction Step (n = m+ 1)

We now prove that the identity holds for n = m + 1. For n = m + 1, the
left-hand side is

cm+1

(
ym+2(λ)ym+1(µ)− ym+2(µ)ym+1(λ)

)
.

By using the recurrence relation, we have two expressions

cm+1ym+2(λ) = (am+1λ+ bm+1)ym+1(λ)− cmym(λ),

cm+1ym+2(µ) = (am+1µ+ bm+1)ym+1(µ)− cmym(µ).

Substituting these into the determinant, we get

cm+1

(
ym+2(λ)ym+1(µ)− ym+2(µ)ym+1(λ)

)
=

(
(am+1λ+ bm+1)ym+1(λ)ym+1(µ)− (am+1µ+ bm+1)ym+1(µ)ym+1(λ)

)
−cm

(
ym(µ)ym+1(λ)− ym(λ)ym+1(µ)

)
.
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Simplifying the first term, we have(
(am+1λ+ bm+1)ym+1(λ)ym+1(µ)− (am+1µ+ bm+1)ym+1(µ)ym+1(λ)

)
.

This simplifies to the following

(am+1(λ− µ))ym+1(λ)ym+1(µ).

For the second term, by using the induction hypothesis, we obtain

−cm
(
ym(µ)ym+1(λ)− ym(λ)ym+1(µ)

)
= −(λ− µ)

m∑
k=0

akyk(λ)yk(µ).

Combining both terms, we get

cm+1

(
ym+2(λ)ym+1(µ)− ym+2(µ)ym+1(λ)

)
= (λ− µ)

(
am+1ym+1(λ)ym+1(µ)

+
m∑
k=0

akyk(λ)yk(µ)
)
.

Expanding the summation, we obtain

cm+1

(
ym+2(λ)ym+1(µ)− ym+2(µ)ym+1(λ)

)
= (λ− µ)

m+1∑
k=0

akyk(λ)yk(µ).

Thus, the induction step is complete. Therefore, by the principle of math-
ematical induction, the identity

cn
(
yn+1(λ)yn(µ)− yn+1(µ)yn(λ)

)
= (λ− µ)

n∑
k=0

akyk(λ)yk(µ)

is valid for all n ≥ 0. ■

We can deduce two important special cases by using the identities below

Starting with the identity, we get the following

cn
(
yn+1(λ)yn(µ)− yn+1(µ)yn(λ)

)
= (λ− µ)

n∑
k=0

akyk(λ)yk(µ). (2.2.1)

We divide both sides by (λ− µ) to get that equality

cn
(
yn+1(λ)yn(µ)− yn+1(µ)yn(λ)

)
λ− µ

=
n∑

k=0

akyk(λ)yk(µ).
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Now, we take the limit as µ → λ. On the left-hand side, we observe that
both the numerator and the denominator vanish as µ → λ, so we apply
L’Hopital’s Rule. Differentiating with respect to µ, we obtain

lim
µ→λ

cn
(
yn+1(λ)yn(µ)− yn+1(µ)yn(λ)

)
λ− µ

= cn
(
yn+1(λ)y

′
n(λ)− y′n+1(λ)yn(λ)

)
.

On the right-hand side, taking the limit as µ → λ simplifies to

lim
µ→λ

n∑
k=0

akyk(λ)yk(µ) =
n∑

k=0

akyk(λ)
2.

Thus, the resulting identity is

cn
(
yn+1(λ)y

′
n(λ)− y′n+1(λ)yn(λ)

)
=

n∑
k=0

akyk(λ)
2.

Theorem 2.2.2. For 0 ≤ n < m,
n∑

m=0

am
(
ym(λ)

)2
= cn

∣∣∣∣yn+1(λ) y′n+1(λ)
yn(λ) y′n(λ)

∣∣∣∣ . (2.2.3)

In particular, for real λ,

y′n+1(λ)yn(λ)− yn+1(λ)y
′
n(λ) > 0. (2.2.4)

Proof:
We aim to prove the inequality

y′n+1(λ)yn(λ)− yn+1(λ)y
′
n(λ) > 0.

This inequality is derived from (2.2.3)

n∑
m=0

am
(
ym(λ)

)2
= cn

(
yn+1(λ)y

′
n(λ)− y′n+1(λ)yn(λ)

)
.

On the left-hand side, we have the summation
n∑

m=0

am
(
ym(λ)

)2
.

Each term in the summation satisfies the following : an > 0, since the
weight coefficients are positive,

(
yn(λ)

)2 ≥ 0, because the square of any
term is non-negative.

Thus, the summation is strictly positive
n∑

m=0

am
(
ym(λ)

)2
> 0.
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On the right-hand side of the identity, the term cn is multiplied by the
determinant

cn
(
yn+1(λ)y

′
n(λ)− y′n+1(λ)yn(λ)

)
.

Since cn > 0, the positivity of the determinant determines the positivity
of the right-hand side. By using the identity we get

n∑
m=0

am
(
ym(λ)

)2
= cn

(
yn+1(λ)y

′
n(λ)− y′n+1(λ)yn(λ)

)
,

We have already established that

The left-hand side is positive (> 0) and cn > 0.

This implies that the determinant must also be positive

y′n+1(λ)yn(λ)− yn+1(λ)y
′
n(λ) > 0.

Therefore, we have proven the inequality

y′n+1(λ)yn(λ)− yn+1(λ)y
′
n(λ) > 0.

■
Theorem 2.2.3. For 0 ≤ n < m, and complex λ,

n∑
m=0

am|ym(λ)|2 =
(
2i Imλ

)−1
cn

∣∣∣∣yn+1(λ) yn(λ)

yn+1(λ) yn(λ)

∣∣∣∣ .
Proof:

We start from the identity given in Theorem 2.2.1

cn
(
yn+1(λ)yn(µ)− yn+1(µ)yn(λ)

)
= (λ− µ)

n∑
k=0

akyk(λ)yk(µ). (2.2.1)

For Theorem 2.2.3, we consider the special case where µ = λ (the complex
conjugate of λ). Substituting µ = λ into (2.2.1), we have

λ− µ = λ− λ = 2i Imλ.

Substituting this back into (2.2.1), we get

cn
(
yn+1(λ)yn(λ)− yn+1(λ)yn(λ)

)
= (2i Imλ)

n∑
k=0

akyk(λ)yk(λ).

Now, using the property of complex conjugates yk(λ) = yk(λ), the equation
becomes

cn
(
yn+1(λ)yn(λ)− yn+1(λ)yn(λ)

)
= (2i Imλ)

n∑
k=0

ak|yk(λ)|2.
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The term on the left-hand side can be expressed as a determinant

yn+1(λ)yn(λ)− yn+1(λ)yn(λ) =

∣∣∣∣yn+1(λ) yn(λ)

yn+1(λ) yn(λ)

∣∣∣∣ .
Thus, we rewrite the equation as

cn

∣∣∣∣yn+1(λ) yn(λ)

yn+1(λ) yn(λ)

∣∣∣∣ = (
2i Imλ

) n∑
k=0

ak|yk(λ)|2.

Finally, dividing through by cn, we obtain
n∑

k=0

ak|yk(λ)|2 =
(
2i Imλ

)−1
cn

∣∣∣∣yn+1(λ) yn(λ)

yn+1(λ) yn(λ)

∣∣∣∣ .
■

We begin with the second standard solution zn(λ), which is defined by
the recurrence relation

cnzn+1(λ) = (anλ+ bn)zn(λ)− cn−1zn−1(λ), (2.2.7)

with the initial conditions

z0(λ) = 0, z−1(λ) = 1. (2.2.8)

For n ≥ 1, zn(λ) is a polynomial of degree n−1. This second solution is
independent of yn(λ), forming the foundation for a determinant relation.

Theorem 2.2.4. For 0 ≤ n < m,

(λ− µ)
n∑

k=0

akyk(λ)zk(µ) = cn

∣∣∣∣yn+1(λ) zn+1(µ)
yn(λ) zn(µ)

∣∣∣∣− 1. (2.2.9)

Proof:

We start with the identity from Theorem 2.2.4

(λ− µ)
n∑

k=0

akyk(λ)zk(µ) = cn

∣∣∣∣yn+1(λ) zn+1(µ)
yn(λ) zn(µ)

∣∣∣∣− 1. (2.2.9)

Now, let λ = µ. In this case, the term (λ − µ) on the left-hand side
becomes zero, so the equation reduces to

0 = cn

∣∣∣∣yn+1(λ) zn+1(λ)
yn(λ) zn(λ)

∣∣∣∣− 1.
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Rearranging, we obtain

cn

∣∣∣∣yn+1(λ) zn+1(λ)
yn(λ) zn(λ)

∣∣∣∣ = 1.

Expanding the determinant, we have∣∣∣∣yn+1(λ) zn+1(λ)
yn(λ) zn(λ)

∣∣∣∣ = yn+1(λ)zn(λ)− zn+1(λ)yn(λ).

Substituting this into the equation, we get

cn{yn+1(λ)zn(λ)− zn+1(λ)yn(λ)} = 1.

To prove (2.2.9), we shall start with the recurrence relations

cnyn+1(λ) = (anλ+ bn)yn(λ)− cn−1yn−1(λ),

cnzn+1(µ) = (anµ+ bn)zn(µ)− cn−1zn−1(µ).

Now, we multiply the first equation by zn(µ) and the second equation
by yn(λ)

cnyn+1(λ)zn(µ) = (anλ+ bn)yn(λ)zn(µ)− cn−1yn−1(λ)zn(µ),

cnzn+1(µ)yn(λ) = (anµ+ bn)zn(µ)yn(λ)− cn−1zn−1(µ)yn(λ).

Subtracting these two equations, we have

cn{yn+1(λ)zn(µ)− zn+1(µ)yn(λ)} =(
(anλ+ bn)yn(λ)zn(µ)− (anµ+ bn)zn(µ)yn(λ)

)
−(

cn−1yn−1(λ)zn(µ)− cn−1zn−1(µ)yn(λ)
)
.

Simplifying the terms, we group the coefficients of (λ − µ) and the
remaining terms

cn{yn+1(λ)zn(µ)− zn+1(µ)yn(λ)} = an(λ− µ)yn(λ)zn(µ)+

cn−1{zn−1(µ)yn(λ)− yn−1(λ)zn(µ)}. (2.2.11)

Thus, we have derived the determinant relation (2.2.11). Let us recall
the initial conditions and setup for n = 0

• y−1(λ) = 0, z−1(µ) = 1,

• y0(λ) = 1, z0(µ) = 0,

• c0 = 1.
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For n = 0, the summation in (2.2.9) simplifies to a single term, and the
determinant reduces to ∣∣∣∣y1(λ) z1(µ)

y0(λ) z0(µ)

∣∣∣∣ .
Base Case (n = 0):
When n = 0, the summation on the left-hand side simplifies to

(λ− µ)a0y0(λ)z0(µ).

Using the initial conditions, we get

y0(λ) = 1, z0(µ) = 0, c0 = 1,

and noting that the determinant becomes∣∣∣∣y1(λ) z1(µ)
y0(λ) z0(µ)

∣∣∣∣ = ∣∣∣∣y1(λ) z1(µ)
1 0

∣∣∣∣ = −z1(µ),

we substitute into the identity then we have

(λ− µ) · a0 · 1 · 0 = 1 · (−z1(µ))− 1.

This simplifies to the following

0 = −z1(µ)− 1 =⇒ z1(µ) = −1.

Thus, the base case holds.
Induction Step:
Assume the identity holds for n = k:

(λ− µ)
k∑

j=0

ajyj(λ)zj(µ) = ck

∣∣∣∣yk+1(λ) zk+1(µ)
yk(λ) zk(µ)

∣∣∣∣− 1.

We aim to prove the identity for n = k + 1

(λ− µ)
k+1∑
j=0

ajyj(λ)zj(µ) = ck+1

∣∣∣∣yk+2(λ) zk+2(µ)
yk+1(λ) zk+1(µ)

∣∣∣∣− 1.

Using the induction hypothesis, we separate the summation

(λ− µ)

[
k∑

j=0

ajyj(λ)zj(µ) + ak+1yk+1(λ)zk+1(µ)

]
.

At this stage, we use the determinant relation (2.2.11)

ck+1{yk+2(λ)zk+1(µ)− zk+2(µ)yk+1(λ)} = (λ− µ)ak+1yk+1(λ)zk+1(µ)

+ ck{zk(µ)yk+1(λ)− yk(λ)zk+1(µ)}.
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Substituting this into the expression, and simplifying, we recover

(λ− µ)
k+1∑
j=0

ajyj(λ)zj(µ) = ck+1

∣∣∣∣yk+2(λ) zk+2(µ)
yk+1(λ) zk+1(µ)

∣∣∣∣− 1.

Thus, by the principle of mathematical induction, the identity holds for
all n ≥ 0.

■

2.3 Oscillatory Properties

This section focuses on the reality and separation of zeros of the poly-
nomial yn(λ) + hyn−1(λ). These properties provide valuable insights into
boundary problems like those described in (2.1.1) and (2.1.3). While many
techniques exist for analyzing classical polynomials such as Legendre poly-
nomials, we limit our discussion to methods based on recurrence relations
and their implications, as outlined in Section 2.2.

Theorem 2.3.1. For real h, the polynomial

yn(λ) + hyn−1(λ) (2.3.1)

has precisely n real and simple zeros.

Proof: Suppose if it is possible take λ as a complex zero of (2.3.1).
Using this fact and taking also complex conjugates, we have

yn(λ) + hyn−1(λ) = 0, yn(λ) + hyn−1(λ) = 0. (2.3.2)

We then can easily see that the right of (2.2.5) vanishes, firstly recall the
recurrence relation

cnyn+1(λ) = (anλ+ bn)yn(λ)− cn−1yn−1(λ), an > 0, cn > 0
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Then focus on the RHS of (2.2.5)

m∑
n=0

an|yn(λ)|2 =
cn

2 Imλ

(
yn+1(λ)yn(λ)− yn(λ)yn+1(λ)

)
=

1

2 Imλ

(
cnyn+1(λ)yn(λ)− cnyn(λ)yn+1(λ)

)
=

1

2 Imλ

{
yn(λ) [(anλ+ bn)yn(λ)− cn−1yn−1(λ)]

− yn(λ)
[
(anλ+ bn)yn(λ)− cn−1yn−1(λ)

]}

=
1

2 i Imλ

{
(λ)an|yn(λ)|2 + bn|yn(λ)|2 − cn−1yn−1(λ)yn(λ)

− (λ)an|yn(λ)|2 − bn|yn(λ)|2 + cn−1yn−1(λ)yn(λ)

}

=
1

2 i Imλ

{
2 i Im (λ)|yn(λ)|2

+ cn−1h|yn−1(λ)|2 − cn−1h|yn−1(λ)|2
}

= an|yn(λ)|2.

Since yn(λ) = 0, then the RHS of (2.5.2) vanishes. However, this is im-
possible because the LHS of equation (2.2.5) is

n∑
r=0

ar|yr(λ)|2,

where ar > 0 and |yr(λ)|2 ≥ 0. Since ar are positive coefficients and |yr(λ)|2
represents the squared modulus, which is always nonnegative, each term
in the summation is nonnegative.

Thus, the entire summation satisfies

n∑
r=0

ar|yr(λ)|2 ≥ 0.

Therefore, the left-hand side of (2.2.5) is nonnegative. Hence, the zeroes
of (2.3.1) are real.

We can conclude that at a hypothetical multiple zero, necessarily real,
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we should have simultaneously

yn(λ) + hyn−1(λ) = 0, y′n(λ) + hy′n−1(λ) = 0,

and so
yn(λ)y

′
n−1(λ)− y′n(λ)yn−1(λ) = 0,

This contradicts to (2.2.4), as shown below The equation derived in the
theorem is

yn(λ)y
′
n−1(λ)− y′n(λ)yn−1(λ) = 0,

which implies that the determinant-like combination of yn(λ), y
′
n(λ), yn−1(λ),

and y′n−1(λ) is zero. This suggests that yn(λ) and yn−1(λ) are linearly de-
pendent, meaning there exists a scalar h such that

yn(λ) + hyn−1(λ) = 0, y′n(λ) + hy′n−1(λ) = 0.

However, equation (2.2.4) explicitly states that

yn(λ)y
′
n−1(λ)− y′n(λ)yn−1(λ) = Cn,

where Cn ̸= 0. This means that the determinant is not zero, and yn(λ)
and yn−1(λ) are linearly independent.

The contradiction arises because if the determinant were zero (as the
derivative-based equation suggests), then Cn would also be zero, violating
(2.2.4). Hence, the assumption of a multiple zero, which leads to the
determinant being zero, is false.

Since (2.3.1), as a polynomial of degree exactly n, must have n zeros
altogether, this completes the proof. ■

Theorem 2.3.2. Two consecutive polynomials yn(λ), yn−1(λ) have no
common zeros. Between any zeros of one of them lies a zero of the other.

Proof: Suppose that λ1, λ2 are two zeros of yn(λ), which we take to
be consecutive; since yn(λ) has only simple zeros, this implies that y′n(λ1),
y′n(λ2) have opposite signs.

Using (2.2.4), we show that between any two consecutive roots of yn(λ),
there lies a root of yn−1(λ). Let λ1 and λ2 be two consecutive roots of
yn(λ). At these points, we have

yn(λ1) = 0, yn(λ2) = 0.

By (2.2.4), we have

yn(λ)y
′
n−1(λ)− y′n(λ)yn−1(λ) = K, K ̸= 0.
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Let λ1 and λ2 be two consecutive roots of yn(λ). At these points, yn(λ1) = 0
and yn(λ2) = 0. Substituting these conditions into (2.2.4), we get

−y′n(λ1)yn−1(λ1) = K, −y′n(λ2)yn−1(λ2) = K.

Since K > 0, it follows that

y′n(λ1)yn−1(λ1) > 0, y′n(λ2)yn−1(λ2) > 0.

Thus, y′n(λ1) and yn−1(λ1) must have the same sign, and similarly for λ2.
As yn(λ) changes sign between λ1 and λ2, we know that y′n(λ1) and y′n(λ2)
must have opposite signs. Consequently, yn−1(λ1) and yn−1(λ2) must also
have opposite signs.

By the Intermediate Value Theorem, yn−1(λ) must have a root between
λ1 and λ2. This proves that between any two consecutive roots of yn(λ),
there lies a root of yn−1(λ). n ≥ 0. ■

2.4 Orthogonality

In this section, we focus on orthogonality of eigenfunctions, that is to say,
of certain sequences of the form (2.1.4).

Theorem 2.4.1. The sequences

y0(λr), . . . , ym−1(λr), r = 0, . . . ,m− 1,

are orthogonal according to

m−1∑
p=0

apyp(λr)yp(λs) = ρrδrs, (2.4.2)

where

ρr =
m−1∑
p=0

ap{yp(λr)}2 (2.4.3)

and
ρr = cm−1ym−1(λr)

{
y′m(λr) + hy′m−1(λr)

}
. (2.4.4)

Proof: For the case r ̸= s, we take λ = λr, µ = λs, n = m−1 in (2.2.1),
getting

(λr − λs)
m−1∑
p=0

apyp(λr)yp(λs) = cm−1

∣∣∣∣ ym(λr) ym(λs)
ym−1(λr) ym−1(λs)

∣∣∣∣ .
15



The determinant on the right vanishes

Expanding the determinant, we have

ym(λr)ym−1(λs)− ym(λs)ym−1(λr).

From the boundary condition, we have

ym(λ) + hym−1(λ) = 0.

We can express ym(λ) in terms of ym−1(λ) as

ym(λ) = −hym−1(λ).

Substituting this into the determinant, we replace ym(λr) and ym(λs) as
follows

ym(λr) = −hym−1(λr), ym(λs) = −hym−1(λs).

Substituting these expressions back into the determinant expansion(
− hym−1(λr)

)
ym−1(λs)−

(
− hym−1(λs)

)
ym−1(λr).

Simplifying the terms, we have

−hym−1(λr)ym−1(λs) + hym−1(λs)ym−1(λr).

The two terms cancel each other out because they are equal in magni-
tude but opposite in sign.

For the case r = s we have λr = λs The expression for ρr is given by

ρr = cm−1ym−1(λr)
{
y′m(λr) + hy′m−1(λr)

}
Using the given relation, we have

ym(λ) + hym−1(λ) = 0.

We know that
ym(λr) = −hym−1(λr).

Differentiating this expression with respect to λ, we find

y′m(λ) + hy′m−1(λ) = 0

which implies
y′m(λr) = −hy′m−1(λr).

Substituting this result into the expression for ρr we have

ρr = cm−1ym−1(λr)
{
− hy′m−1(λr) + hy′m−1(λr)

}
16



Simplifying the terms inside the brackets, we obtain

ρr = cm−1ym−1(λr) · 0

Therefore ρr = 0. Since the sequences (2.4.1) constitute m orthogonal and
nontrivial m-vectors, there will be an eigenfunction expansion. In this case
if u0, . . . , um−1 is any sequence, and we define

v(λ) =
m−1∑
n=0

apupyp(λ), (2.4.5)

then

up =
m−1∑
r=0

v(λr)yp(λr)ρ
−1
r , p = 0, . . . ,m− 1. (2.4.6)

In addition, we have the Parseval equality

m−1∑
r=0

|v(λr)|2ρ−1
r =

m−1∑
p=0

ap|up|2. (2.4.7)

This expansion theorem can serve as a foundation of the expansion theorem
for differential equations of the second order. Now, we can conclude the
proof. ■
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3 Nesting Circle Analysis

Let’s consider the limiting behavior of the characteristic function fm,h(λ)
as m → ∞,

fm,h(λ) = −zm(λ) + hzm−1(λ)

ym(λ) + hym−1(λ)
.

Let C(m,λ) to be the locus of fm,h(λ) as h describes the real axis, by
taking λ to be fixed and in the upper half-plane. We characterize by
D(m,λ) the region described by fm,h(λ) when h takes all values in the
upper half-plane. For example, since y−1 = 0, y0 = 1/c−1, z−1 = 1, z0 = 0.

The characteristic function is given by

fm,h(λ) = −zm(λ) + hzm−1(λ)

ym(λ) + hym−1(λ)
.

For m = 0, this becomes

f0,h(λ) = −z0 + hz−1

y0 + hy−1
.

Substituting the given values z0 = 0, z−1 = 1, y0 = 1
c−1

, and y−1 = 0, we
obtain

f0,h(λ) = − 0 + h · 1
1

c−1
+ h · 0

.

Thus, the result is
f0,h(λ) = −c−1h, (3.1)

so that C(0, λ) is the real axis and D(0, λ) is the lower half-plane. Since
further y1(λ) = (a0λ+ b0)/(c0c−1), and z1 = −c−1/c0, then For m = 1, the
characteristic function becomes:

f1,h(λ) = −z1 + hz0
y1 + hy0

.

Substituting the given values,

y1(λ) =
a0λ+ b0
c0c−1

, y0 =
1

c−1
, z1 = −c−1

c0
, z0 = 0,

18



we have

f1,h(λ) = −
−c−1

c0
+ h · 0

a0λ+b0
c0c−1

+ h · 1
c−1

.

Simplifying the terms, we obtain

f1,h(λ) = −
−c−1

c0
a0λ+b0
c0c−1

+ h
c−1

.

Combining terms in the denominator, we get the following

f1,h(λ) = −
−c−1

c0
a0λ+b0+hc0

c0c−1

.

Simplifying further, we have corresponding characteristic function

f1,h(λ) = −
(
−c−1

c0

)
· c0c−1

a0λ+ b0 + hc0
.

The final result is

f1,h(λ) =
(c−1)

2

a0λ+ b0 + hc0
. (3.2)

Before moving forward, we must revisit the linear transformation of a
circle.

In a linear transformation, a circle transforms into a circle, and inverse
points transform into inverse points. In the particular case in which the
circle becomes a straight line, inverse points become points symmetrical
about the line. For let ∣∣∣∣z − p

z − q

∣∣∣∣ = k

be a circle (or straight line), with p and q as inverse points. Let

w =
az + b

cz + d
, z =

dw − b

−cw + a
.

Then the circle transforms into∣∣∣∣dw − b− p(−cw + a)

dw − b− q(−cw + a)

∣∣∣∣ = k
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or ∣∣∣∣∣w − ap+b
cp+d

w − aq+b
cq+d

∣∣∣∣∣ = k

∣∣∣∣cq + d

cp+ d

∣∣∣∣ .
Going back to our main discussion, for fixed λ in the upper half-plane

and varying real h, f1,h(λ) describes a finite curve which must be a circle,
by the elementary theory of conformal mapping that we revisited. Thus
C(1, λ) is a circle; since Imλ > 0. From (3.2) we know that the character-
istic function is given as

f1,h(λ) =
(c−1)

2

a0λ+ b0 + c0h
.

Here, λ = u + iv, where u is the real part, and v > 0 is the imaginary
part of λ (Imλ = v > 0). Since the numerator (c−1)

2 is constant, the
properties of f1,h(λ) are determined by the denominator a0λ + b0 + c0h.
The denominator can be written as

a0λ+ b0 + c0h = a0(u+ iv) + b0 + c0h = a0u+ b0 + c0h+ ia0v

Here, the real part of the denominator is

Re(a0λ+ b0 + c0h) = a0u+ b0 + c0h

and the imaginary part is

Im(a0λ+ b0 + c0h) = a0v.

The imaginary part of f1,h(λ) is found using the general rule

Im

(
1

z

)
= −Im(z)

|z|2

where z = a0λ+ b0 + c0h. Substituting this, we get

Im f1,h(λ) = −Im(a0λ+ b0 + c0h)

|a0λ+ b0 + c0h|2

Since Im(a0λ+b0+c0h) = a0v and v > 0, it follows that Im(a0λ+b0+c0h) >
0. Therefore, the negative sign in the expression ensures

Im f1,h(λ) = −Im(a0λ+ b0 + c0h)

|a0λ+ b0 + c0h|2
≤ 0

Thus, when Imλ > 0, the imaginary part of f1,h(λ) is always less than
or equal to zero, which means that f1,h(λ) lies in the lower half-plane.

20



Equality holds only when h → ∞, as this makes the imaginary part of the
denominator approach zero.

Thus the circle C(1, λ) lies in the lower half-plane, touching the real axis
at the origin.

Since, again by (3.2), f1,h(λ) is finite when Imh > 0, the regionD(1, λ) is
the inside of the circle C(1, λ). We have here the beginnings of the nesting
property, in that C(1, λ) lies inside the regionD(0, λ), and containsD(1, λ)
as its interior.

For the general result we proceed inductively, showing that

C(m+ 1, λ) ⊂ D(m,λ).

By the recurrence relation we have

zm+1(λ) + hzm(λ)

ym+1(λ) + hym(λ)
=

(amλ+ bm + hcm)zm(λ)− cm−1zm−1(λ)

(amλ+ bm + hcm)ym(λ)− cm−1ym−1(λ)
, (3.3)

We start by analyzing the numerator and denominator of the right-hand
side separately. For the numerator

(amλ+ bm + hcm)zm(λ)− cm−1zm−1(λ).

Substituting h′ = − cm−1

amλ+bm+hcm
, we replace cm−1 with −h′(amλ + bm +

hcm). This results in

(amλ+bm+hcm)zm(λ)−cm−1zm−1(λ) = (amλ+bm+hcm) [zm(λ)− h′zm−1(λ)] .

For the denominator, we get

(amλ+ bm + hcm)ym(λ)− cm−1ym−1(λ).

Similarly, substituting cm−1 = −h′(amλ+ bm+hcm) into the denominator,
we get

(amλ+bm+hcm)ym(λ)−cm−1ym−1(λ) = (amλ+bm+hcm) [ym(λ)− h′ym−1(λ)] .

With both the numerator and denominator simplified, the expression be-
comes

(amλ+ bm + hcm) [zm(λ)− h′zm−1(λ)]

(amλ+ bm + hcm) [ym(λ)− h′ym−1(λ)]
.

The common factor (amλ + bm + hcm) cancels out, leaving identity is fol-
lowing

zm(λ)− h′zm−1(λ)

ym(λ)− h′ym−1(λ)
.
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This is the definition of fm,h′(λ)

fm,h′(λ) =
zm(λ)− h′zm−1(λ)

ym(λ)− h′ym−1(λ)
.

Thus, we have shown
fm+1,h(λ) = fm,h′(λ), (3.4)

where
h′ = −cm−1/(amλ+ bm + hcm). (3.5)

If h is real, and Imλ > 0, we shall have Imh′ > 0, and so the points
of fm+1,h(λ) when h is real are points of fm,h′(λ) when h′ is in the upper
half-plane. This proves that D(m + 1, λ) ⊂ D(m,λ), since if Imh > 0,
then (3.5) shows that Imh′ > 0.

Thus C(2, λ) lies inside D(1, λ), and must in particular be a circle rather
than a straight line, and D(2, λ) lying inside D(1, λ) must be the finite
region bounded by C(2, λ), and so a disk, and so on.

We recognize two possibilities, according to whether the nesting circles
contract to a point, or to a limiting circle, these two cases being the limit-
point and limit-circle cases, respectively.

For this purpose we note that one point of C(m,λ), given by h = ∞, is
−zm−1(λ)/ym−1(λ), so that the radius will be half the distance from this
point to the furthest point of the circle, namely

1

2
max

h

∣∣∣∣zm−1(λ)/ym−1(λ)− {zm(λ) + hzm−1(λ)}/{ym(λ) + hym−1(λ)}
∣∣∣∣.

The second term can be written as

zm(λ) + hzm−1(λ)

ym(λ) + hym−1(λ)
=

zm(λ)ym−1(λ) + hzm−1(λ)ym−1(λ)

ym(λ)ym−1(λ) + hy2m−1(λ)
.

Subtracting the two terms gives

zm−1(λ)

ym−1(λ)
− zm(λ) + hzm−1(λ)

ym(λ) + hym−1(λ)
=

zm−1(λ)(ym(λ) + hym−1(λ))− (zm(λ) + hzm−1(λ))ym−1(λ)

ym−1(λ)(ym(λ) + hym−1(λ))
.

Expanding the numerator yields that

zm−1(λ)ym(λ) + hzm−1(λ)ym−1(λ)− zm(λ)ym−1(λ)− hzm−1(λ)ym−1(λ).
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The h-dependent terms cancel, leaving that

zm−1(λ)ym(λ)− zm(λ)ym−1(λ)

ym−1(λ)(ym(λ) + hym−1(λ))
.

By using the identity below

cm−1{ym(λ)zm−1(λ)− zm(λ)ym−1(λ)} = 1

We obtain that

zm−1(λ)ym(λ)− zm(λ)ym−1(λ) =
1

cm−1
.

Substituting this into the expression gives the following

1
cm−1

ym−1(λ)(ym(λ) + hym−1(λ))
.

Simplifying, the final expression becomes

1

2
max

h
|cm−1ym−1(λ){ym(λ) + hym−1(λ)}|−1 .

The maximum is reached when |ym(λ) + hym−1(λ)| has a minimum, for
real h, and straightforward calculations show that this occurs when

h = −Re{ym(λ)ym−1(λ)}/|ym−1(λ)|2,

The radius being then |cm−1ym(λ)ym−1(λ)− ym(λ)ym−1(λ)|−1.
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4 Conclusion

This project explored the mathematical structure of discrete boundary
problems and their parallels to classical Sturm-Liouville theory. By ana-
lyzing recurrence relations, oscillatory behavior, orthogonality conditions,
and spectral characteristics, we developed a deeper understanding of these
systems and their unique features.

The study highlighted how recurrence relations govern the dynamics of
solutions, including the distribution of zeros and eigenvalues. The orthogo-
nality of eigenfunctions played a key role in linking discrete and continuous
methods, showcasing the unity of mathematical principles across domains.
Additionally, spectral analysis revealed critical insights into stability and
resonance phenomena.

The geometric perspective, particularly through conformal mapping and
nesting circle analysis, provided a visual understanding of the behavior
of characteristic functions. This approach uncovered structural richness
and deepened our appreciation for the interplay between algebraic and
geometric properties.
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