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Abstract
Conformable fractional derivatives offer a novel approach to fractional cal-
culus, departing from traditional definitions like Riemann-Liouville and Ca-
puto. By employing the standard limit definition of the derivative, they
exhibit a simpler structure and retain several properties of classical calcu-
lus, such as the chain rule and product rule. This simplicity enhances their
applicability in various fields, including modeling viscoelastic materials, de-
scribing anomalous diffusion, and solving fractional differential equations.
However, limitations such as the lack of semi-group property and ongoing
debates regarding their physical interpretation warrant further investigation.
This project provides an overview of conformable fractional derivatives, high-
lighting their key features.

1



1 Introduction
Fractional calculus is a branch of mathematical analysis that studies the pos-
sibility of taking derivatives and integrals of functions to any arbitrary order,
not just integer orders. It extends the classical definition of differentiation
and integration, which are limited to integer orders, to include fractional
orders.

The concept of fractional calculus dates back to the late 17th century,
when mathematicians like Gottfried Wilhelm Leibniz and Niels Henrik Abel
began to explore the idea of taking derivatives and integrals to non-integer
orders. However, it was not until the 20th century that fractional calculus
began to be more widely studied and applied.

One of the main challenges in fractional calculus is defining what it means
to take a derivative or integral to a non-integer order. There are several
different definitions of fractional derivatives and integrals, each with its own
advantages and disadvantages. Some of the most common definitions include
the Riemann-Liouville definition, the Caputo definition, and the Grünwald-
Letnikov definition.

Despite the challenges, fractional calculus has a wide range of applications
in various fields, including physics, engineering, and finance. For example,
fractional calculus can be used to model systems with memory or hereditary
properties, such as viscoelastic materials and financial markets. It can also
be used to solve differential equations that cannot be solved using classical
methods.

In recent years, there has been a resurgence of interest in fractional calcu-
lus, due in part to its potential applications in areas such as control theory,
signal processing, and image processing. As our understanding of fractional
calculus grows, it is likely that we will find even more applications for this
powerful mathematical tool.

The traditional definitions of the fractional derivatives are nonlocal. This
nonlocality comes from the kernel the definitions contain.

For the sake of simplifying the applicability of the fractional operators,
researchers proposed local fractional operators such as the fractal and con-
formable derivatives. The key difference between nonlocal and local fractional
operators lies in their dependence on the function’s behavior over its entire
domain versus just a small neighborhood of a point. Local fractional oper-
ators, like the standard derivative, only consider the function’s values in an
infinitesimally small region around a specific point. This makes them suitable
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for describing phenomena where local behavior dominates, such as classical
mechanics on smooth surfaces. In contrast, nonlocal fractional operators,
such as the Riemann-Liouville or Caputo fractional derivatives, take into ac-
count the function’s values over its entire domain or a significant portion of
it. This nonlocal characteristic makes them ideal for modeling systems with
memory or long-range interactions, like viscoelastic materials or anomalous
diffusion.

The choice between local and nonlocal fractional operators depends on the
specific problem and the nature of the system being modeled. If the system
exhibits strong local behavior, a local fractional operator might be more
appropriate. However, if nonlocal effects are significant, a nonlocal fractional
operator is often necessary to accurately capture the system’s dynamics.

In this work, we focus on the study of one type of the local fractional
derivatives which is known as the conformable fractional derivative.

Conformable fractional derivatives represent a relatively new approach
to fractional calculus. They were introduced in 2014 and aim to provide
a simpler and more intuitive definition compared to traditional fractional
derivatives like Riemann-Liouville or Caputo.

The key feature of conformable fractional derivatives is their reliance on
the standard limit definition of the derivative. This means they retain many
of the familiar properties of the classical derivative, such as the chain rule
and product rule, which can be challenging to establish for other fractional
derivatives. This simplicity has made conformable fractional derivatives at-
tractive for researchers and engineers seeking to apply fractional calculus to
real-world problems.

However, conformable fractional derivatives also have some limitations.
For instance, they do not always satisfy the semigroup property, which is a
fundamental property of fractional operators. Additionally, their connection
to traditional fractional calculus and their physical interpretation are still
areas of ongoing research.

Despite these limitations, conformable fractional derivatives have shown
promise in various applications, including modeling viscoelastic materials,
describing anomalous diffusion, and solving certain types of fractional dif-
ferential equations. As research progresses, a deeper understanding of their
properties and limitations will continue to shape their role in the field of
fractional calculus.
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2 What is a conformable derivative

Let f : [0,∞) → R and t > 0. Then the definition its derivative of
df

dt
=

lim
ε→0

f(t+ ε)− f(t)

ε
. Accordingly, dtn

dt
= ntn−1. So the question is: Can

one put a similar definition for the fractional derivative of order α, where
0 < α ≤ 1 ? Or in general for α ∈ (n, n+ 1] where n ∈ N.

Let Tα denote the operator which is called the fractional derivative of
order α. For α = 1, T1 satisfies the following properties:
(i) T1(af + bg) = aT1(g) + bT1(f), for all a, b ∈ R and f, g in the domain of
T1.
(ii) T1 (t

p) = ptp−1 for all p ∈ R.
(iii) T1(fg) = fT1(g) + gT1(f).
(iv) T1

(
f
g

)
= gT1(f)−fT1(g)

g2
.

(v) T1(λ) = 0, for all constant functions f(t) = λ.
Below we present the definition of the (local) conformable fractional

derivative, which is the simpler than the traditional fractional derivative of
order α ∈ (0, 1]. It should be remarked that the definition can be generalized
to include any α.

Definition 2.1 Given a function f : [0,∞) −→ R. Then the "conformable
fractional derivative" of f of order α is defined by

Tα(f)(t) = lim
ε→0

f (t+ εt1−α)− f(t)

ε
, (2.1)

for all t > 0, α ∈ (0, 1). If f is α-differentiable in some (0, a), a > 0, and
limt→0+ f (α)(t) exists, then

f (α)(0) = lim
t→0+

f (α)(t). (2.2)

One should notice that a function could be α-differentiable at a point
but not differentiable, for example, take f(t) = 2

√
t. Then T 1

2
(f)(0) =

limt→0+ T 1
2
(f)(t) = 1, where T 1

2
(f)(t) = 1, for t > 0. But T1(f)(0) does not

exist. This is not the case for the known classical fractional derivatives.
Although the most important case for the range of α is (0, 1), but, what

if α ∈ (n, n+1] for some natural number n ? What would be the definition?
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We will, sometimes, write f (α)(t) for Tα(f)(t), to denote the conformable
fractional derivatives of f of order α. In addition, if the conformable frac-
tional derivative of f of order α exists, then we simply say f is α-differentiable.

The connection between α-differentiability and continuity is presented in
the following theorem.

Theorem 2.1 If a function f : [0,∞) −→ R is α-differentiable at t0 >
0, α ∈ (0, 1], then f is continuous at t0.

Proof. Since f
(
t0 + εt1−α

0

)
− f (t0) =

f(t0+εt1−α
0 )−f(t0)

ε
ε. Then,

lim
ε→0

[
f
(
t0 + εt1−α

0

)
− f (t0)

]
= lim

ε→0

f
(
t0 + εt1−α

0

)
− f (t0)

ε
· lim
ε→0

ε

Let h = εt1−α
0 . Then,

lim
h→0

[f (t0 + h)− f (t0)] = f (α) (t0) · 0

which implies that

lim
h→0

f (t0 + h) = f (t0)

Hence, f is continuous at t0.

It can easily observed that the conformable derivative satisfies the prop-
erties of the classical derivative as mention in the following theorem.

Theorem 2.2 Let α ∈ (0, 1] and f, g be α-differentiable at a point t > 0.
Then

1. Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R.

2. Tα (t
p) = ptp−α for all p ∈ R.

3. Tα(λ) = 0, for all constant functions f(t) = λ.

4. Tα(fg) = fTα(g) + gTα(f).

5. Tα

(
f
g

)
= gTα(f)−fTα(g)

g2
.

6. If, in addition, f is differentiable, then Tα(f)(t) = t1−α df
dt
(t).
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Proof 2.1

Tα(af + bg) = limε→0
(af+bg)(t+εt1−α−(af+bg)(t)

ε

= limε→0
af(t+εt1−α+bg(t+εt1−α−af(t)+bg(t)

ε

= limε→0
a[f(t+εt1−α)−f(t)]

ε
+ limε→0

b[g(t+εt1−α)−g(t)]
ε

= aTα(f) + bTα(g)

Tα(t
p)(t) = limε→0

(tp)(t+εt1−α−(tp)(t)
ε

= limε→0
(t+εt1−α)

p−tp

ε

let h = εt1−α , then ε = t1−ph therefore

Tα(t
p)(t) = limh→0

(t+h)p−tp

htα−p

= t1−α limh→0
(t+h)p−tp

h

= t1−αptp−1

= ptp−α

f(t) = λ then

Tα(λ)(t) = limε→0
λ(t+εt1−α)−λ(t)

ε

= limε→0
λ−λ
ε

= limε→0 0 = 0
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Tα(fg)(t) = limε→0
(fg+εt1−α)−(fg)(t)

ε

= limε→0
f(t+εt1−α)g(t+εt1−α)−f(t)g(t)

ε

= limε→0
f(t+εt1−α)g(t+εt1−α)−f(t)g(t+εt1−α)+f(t)g(t+εt1−α)−f(t)g(t)

ε

= limε→0
f(t+εt1−α)−f(t)

ε
g(t+ εt1−α) + f(t) limε→0

g(t+εt1−α)−g(t)
ε

= Tα(f)(t)g(t+ εt1−α) + f(t)Tα(g)(t)

Since g is continuous at t, limε→0 g(t+ εt1−α) = g(t).

Hence Tα(fg)(t) = Tα(f)(t)g(t) + f(t)Tα(g)(t).

Tα(f/g)(t) = limε→0
(f/g)(t+εt1−α)−(f/g)(t)

ε

= limε→0

(f)(t+εt1−α

g(t+εt1−α)
)− (f)(t)

g(t)

ε

= limε→0
g(t)f(t+εt1−α)−f(t)g(t+εt1−α)

εg(t+εt1−α)g(t)

= limε→0
g(t)f(t+εt1−α)
εg(t+εt1−α)g(t)

− limε→0
f(t)g(t+εt1−α)
εg(t+εt1−α)g(t)

= limε→0
g(t)f(t+εt1−α)−f(t)g(t)

εg(t+εt1−α)g(t)
− limε→0

f(t)g(t+εt1−α)−f(t)g(t)
εg(t+εt1−α)g(t)

Let f be differentiable and let h = εt1−α.

Then ε = tα−1h. Therefore

7



Tα(f)(t) = limε→0
f(t+εt1−α)−f(t)

ε

= limε→0
f(t+h)−f(t)

htα−1

= tα−1 limε→0
f(t+h)−f(t)

h

= t1−α df
dt
(t)

Definition 2.2 Let α ∈ (n, n + 1], and f be an n-differentiable at t, where
t > 0. Then the conformable fractional derivative of f of order α is defined
as

Tα(f)(t) = lim
ε→0

f (⌈α⌉−1)
(
t+ εt(⌈α⌉−α)

)
− f (⌈α⌉−1)(t)

ε

where ⌈α⌉ is the smallest integer greater than or equal to α.
Remark 2.1. As a consequence of Definition 2.2, one can easily show that

Tα(f)(t) = t(⌈α⌉−α)f ⌈α⌉(t)

where α ∈ (n, n+ 1], and f is (n+ 1)-differentiable at t > 0.
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3 Conformable fractional derivatives of certain
functions

Theorem 3.1 Let α ∈ (0, 1]. The following assertions hold.

1. Tα (t
p) = ptp−α for all p ∈ R.

2. Tα(1) = 0.

3. Tα (e
cx) = cx1−αecx, c ∈ R.

4. Tα(sin bx) = bx1−α cos bx, b ∈ R.

5. Tα(cos bx) = −bx1−α sin bx, b ∈ R.

6. Tα

(
1
α
tα
)
= 1.

7. Tα

(
sin 1

α
tα
)
= cos 1

α
tα.

8. Tα

(
cos 1

α
tα
)
= − sin 1

α
tα.

9. Tα

(
e

1
α
tα
)
= e

1
α
tα.

Proof 3.1
Tα(t

p) = limε→0
tp(t+εt1−α)−(tp)(t)

ε

= limε→0
(t+εt1−α)−tp

ε

Let h = εt1−α then ε = t1−αh . Therefore

Tα(t
p) = limε→0

(t+εt1−α)−tp

ε

= limh→0
(t+h)p−tp

htα−1

= t1−α limh→0
(t+h)p−tp

h

= t1−α(tp)′

= t1−αptp−1

= ptp−α
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From Theorem 2.2 (3), for all constant functions: f(t) = λ, Tα(λ) = 0 since
λ = 1, f(t) = 1 for constant function Tα(1) = 0.

Tα(e
cx) = limε→0

c(x+εx1−α)−ecx

ε

= limε→0
ecxeεcx−ecx

ε

= limε→0
ecx(ecεx−1)

ε

Let cεx1−α = h, then ε = xα−1h
c

limh→0
ecx(eh−1)

xα−1h

c

= cecxx1−α limh→0
eh−1
h

= cecxx1−α

Tα(sinbx) = limε→0
sin(b(x+εx1−α))−sinbx

ε

= limε→0
sin(bx+bεx1−α))−sinbx

ε

= limε→0
sin(bx)cos(bεx1−α)+cos(bx)sin(bεx1−α)−sin(bx)

ε

Let h = bεx1−α then ε = xα−1h
b

.

lim
h→0

sin(bx)cosh+ cos(bx)sinh− sin(bx)
xα−1h

b

= bx1−α lim
h→0

sin(bx)
cosh

h
+ cosbx

sinh

h

sinbx

h

= bx1−α[lim
h→0

cosh lim
h→0

sinhx

+ cosx lim
h→0

sinh

h
− lim

h→0

sinbx

h
]

= bx1−αcosbx
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Tα(cosbx) = lim
ε→0

cos(b(x+ εx1−α))− cosbx

ε

= lim
ε→0

cos(bx+ bεx1−α)− cosbx

ε

Let bεx1−α = h , then ε = xα−1h
b

. Therefore,

Tα(cosbx) = lim
h→0

cos(bx+ h)− cosbx
xα−1h

b

= (bx1−α) lim
h→0

cos(bx+ h)− cosbx

h

= bx1−α lim
h→0

cosbxcosh− sinbxsinh− cosbx

h

= bx1−α[lim
h→0

cosh lim
h→0

cos(bx)

h
− sinbx lim

h→0

sinh

h
− lim

h→0

cosbx

h
]

= −bx1−αsinbx

Tα(
1
α
tα) = 1 , from Theorem 2.2(2), Tα(t

p) = ptp−α for all p ∈ R . Let

11



p = α then Tα(t
α) = αtα−α = α

Tα(
1

α
tα) = lim

ε→0

1
α
(t+ εt1−α)− 1

α
tα

ε

=
1

α
lim
ε→0

(t+ εt1−α)− tα

ε

=
1

α
Tα(t

α)

=
1

α
α

= 1

Tα

(
sin 1

α
tα
)
= cos 1

α
tα because g = 1

α
tα , f = sin(t).

Tα(fog)(t) = t1−αd(sin(t))

dt

dg

dt

= t1−αcos(
1

α
tα)(

1

α
tα)′

= t1−α 1

α
tααtα−1cos(

1

α
tα)

= cos(
1

α
tα)

rclTα

(
cos

1

α
tα
)

= t1−α(−sin(
1

α
tα))(

1

α
tα)′

= t1−αα
1

α
tα−1(−sin(

1

α
tα))

= −sin(
1

α
tα)

12



Tα(e
1
α
tα) = Tα(fog)(t),where f = et, g =

1

α
tα

= t1−αe
1
α
tα(

1

α
tα)′

= t1−α 1

α
αtα−1e

1
α
tα
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4 Mean value theorem in the conformable deriva-
tive context

It is possible to prove basic analysis theorems like the Rolle’s theorem and
the mean value theorem in the framework of the conformable derivative.

Theorem 4.1 (Rolle’s Theorem for Conformable Fractional Differentiable
Functions). Let a > 0 and f : [a, b] → R be a given function that satisfies

(i) f is continuous on [a, b],

(ii) f is α-differentiable for some α ∈ (0, 1),

(iii) f(a) = f(b).

Then, there exists c ∈ (a, b), such that f (α)(c) = 0.

Proof 4.1 Since f is continuous on [a, b], and f(a) = f(b), there is c ∈
(a, b), which is a point of local extrema. With no loss of generality, assume
c is a point of local minimum. So

f (α)(c) = lim
ε→0+

f (c+ εc1−α)− f(c)

ε
= lim

ε→0−

f (c+ εc1−α)− f(c)

ε

But, the first limit is non-negative, and the second limit is non-positive.
Hence f (α)(c) = 0.

Theorem 4.2 (Mean Value Theorem for Conformable Fractional Differen-
tiable Functions). Let a > 0 and f : [a, b] → R be a given function that
satisfies
(i) f is continuous on [a, b].
(ii) f is α-differentiable for some α ∈ (0, 1).

Then, there exists c ∈ (a, b), such that f (α)(c) = f(b)−f(a)
1
α
bα− 1

α
aα

.
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Proof 4.2 Consider the function

g(x) = f(x)− f(a)− f(b)− f(a)
1
α
bα − 1

α
aα

(
1

α
xα − 1

α
aα

)
Then the function g satisfies the conditions of Rolle’s theorem. Hence

there exists c ∈ (a, b), such that g(α)(c) = 0. Using the fact that Tα

(
1
α
tα
)
= 1,

the result follows.
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5 The conformable fractional integral
When it comes to integration, the most important class of functions to define
the integral is the space of continuous functions.

So, using the Weierstrass theorem, it is enough to define the fractional
integral on polynomials. This suggests the following.

Let α ∈ (0,∞). Define Iα (t
p) = tp+α

p+α
for any p ∈ R, and α ̸= −p.

If f(t) =
∑n

k=0 bkt
k, then we define Iα(f) =

∑n
k=0 bkJα

(
tk
)
=

∑n
k=0 bk

tk+α

k+α
.

If f(t) =
∑∞

k=0 bkt
k, where the series is uniformly convergent, then we define

Iα(f) =
∑∞

k=0 bk
tk+α

k+α
.

Clearly, Iα is linear on its domain. Further, if α = 1, then Jα is the usual
integral.

Example 5.1 if α = 1
2
, then

Iα(sin t) =
∞∑
n=0

(−1)nt2n+
3
2(

2n+ 3
2

)
(2n+ 1)!

Similarly one can find the fractional integral of cos t and et, and for any
α ∈ (0, 1).
These examples suggest the following definition for the α-fractional integral
of a function f starting from a ≥ 0.

Definition 5.1 Iaα(f)(t) = Ia1 (t
α−1f) =

∫ t

a
f(x)
x1−αdx, where the integral is the

usual Riemann improper integral, and α ∈ (0, 1).
So, I01

2

(
√
t cos t) =

∫ t

0
cosxdx = sin t, and I01

2

(cos 2
√
t) = sin 2

√
t.

One of the nice results is the following.

Theorem 5.1 TαI
a
α(f)(t) = f(t), for t ≥ a, where f is any continuous func-

tion in the domain of Iα.

Proof 5.1 Since f is continuous, then Iaα(f)(t) is clearly differentiable. Hence,
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Tα (I
a
α(f)) (t) = t1−α d

dt
Iaα(f)(t)

= t1−α d

dt

∫ t

a

f(x)

x1−α
dx

= t1−α f(t)

t1−α

= f(t).
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6 Differential equations in the conformable frac-
tional settings

In this section, methods to solve differential equations involving conformable
derivatives are discussed

Let us consider the following equation

Tαy + h(x)y = k(x), (6.1)

where 0 < α < 1 and h, k : R → R are α-differentiable functions. If
k(t) = 0, then (6.1) is said to be homogeneous. Otherwise, it is called non-
homogeneous.

Theorem 6.1 The solution of the homogeneous conformable differential equa-
tion corresponding to (6.1) reads

yh(x) = ce−I0αh(x). (6.2)

Proof 6.1 It is enough to show that the homogeneous equation associated
with (6.1) is fulfilled by the function. yh(x) = ce−I0αh(x). Now, replacing yh
in the equation we have

Tαy + h(x)y = ct1−α d

dx

[
e−I0αh(x)

]
+ ch(x)e−I0αh(x)

= −cx1−α d

dx

[
I0αh(x)

]
e−I0αh(x) + ch(x)e−I0αh(x)

= −cx1−α h(x)

x1−α
e−I0αh(x) + ch(x)e−I0αh(x)

= 0.

Theorem 6.2 The particular solution of the conformable differential equa-
tion (6.1) can be found by using the method of variation of parameters and
it is given by

yp(x) = λ(x)e−I0αh(x), (6.3)

where h is obtained through the following condition

λ(x) = I0α

(
k(x)eI

0
αh(x)

)
. (6.4)
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Proof 6.2 Plugging yp in (6.1) and using the fourth property in Theorem
2.2 we get

Tα(λ(x))e
−I0αh(x) + λ(x)Tα(e

−I0αh(x)) + h(x)λ(x)e−I0αh(x) = k(x).

Since e−I0αh(x) is a solution of the homogeneous equation, we have
Tα(e

−I0αh(x)) = −h(x)e−I0αh(x). Therefore, we have

Tα(λ(x))e
−I0αh(x) = k(x).

That is,
Tα(λ(x)) = k(x)eI

0
αh(x).

The result is then obtained by performing the conformable fractional integral
on both sides of the previous example.

Remark 6.1 The general solution to the differential equations defined by
(6.1) is given as y(x) = yh(x) + yp(x).

Example 6.1 Lets find the general solution

T 1
2
y +

√
xy = xe−x.

Here α = 1
2
, h(x) =

√
x and k(x) = xe−x. Thus, I01

2
h(x) =

∫ x

0

t
1
2
−1
√
tdt =∫ x

0

1dt = x.. Therefore, yh(x) = ce−x. Now λ(x) =

∫ x

0

t
1
2
−1te−tetdt =

2

3
x

3
2 .

Consequently, yp(x) =
2

3
x

3
2 e−x. The general equation has the form

y(x) = ce−x +
2

3
x

3
2 e−x.

7 Conclusion
Conformable fractional derivatives present an intriguing alternative within
the realm of fractional calculus. Their foundation in the standard limit defini-
tion of the derivative lends them a degree of simplicity and intuitiveness that
distinguishes them from more established approaches like Riemann-Liouville
and Caputo. This simplicity translates to several advantages, including the
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retention of familiar properties such as the chain rule and product rule, which
can significantly facilitate the analysis and solution of fractional differential
equations.

However, it is crucial to acknowledge the limitations inherent to con-
formable fractional derivatives. The lack of adherence to the semigroup
property, a fundamental characteristic of fractional operators, raises ques-
tions about their deeper connection to the broader framework of fractional
calculus. Moreover, their physical interpretation and the extent to which they
accurately model real-world phenomena remain subjects of ongoing research
and debate.

Despite these challenges, the potential of conformable fractional deriva-
tives is undeniable. Their applicability in diverse fields, including modeling
viscoelastic materials, describing anomalous diffusion, and solving fractional
differential equations, demonstrates their significance. Continued research ef-
forts are essential to further elucidate their properties, refine their theoretical
foundations, and expand their range of applications.

By addressing the existing limitations and deepening our understanding
of their underlying principles, conformable fractional derivatives have the po-
tential to become a valuable tool in the arsenal of mathematical techniques
used to model and analyze complex systems in various scientific and engi-
neering disciplines.
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