

ÇANKAYA UNIVERSITY Faculty of Arts and Sciences

Course Definition Form

This form should be used for either an elective or a compulsory course being proposed and for a curriculum development process for an undergraduate curriculum at Çankaya University, Faculty of Arts and Sciences. Please fill in the form completely and submit the print-out carrying the approval of the Department Chair to the Dean's Office. Upon receipt of both copies, the print-out will be forwarded to the Faculty Academic Board for approval. Incomplete forms will be returned to the Department. The approved form is finally sent to the President's office for approval by the Senate.

Incomplete approval b		will be returned to the enate.	Dep	partment. The appro	ved	form is finally sent t	to the	President's of	fice for
Part I. Ba	sic Cou	ırse Information							
Department Name		MATHEMATICS					Dep	t. Numeric Code	2 7
Course Code		M A T H 4 2	1	Number of Weekly Lecture Hours	3	Number of Weekly Lab/Tutorial Hours	0	Number of Credit Hours	3
Course Web	Site	http:// math491.cank	aya	.edu.tr			ECT	'S Credit	0 5
Course Nam		ar in the printed catalogs and o	n the	web online catalog.					
English Name	Fourie	r Analysis							
Turkish Name	Fourie	r Analizi							
Introducing	overview o vords. g the Fo	of what is covered during the se purier series using the or series, introducing the	hea	t equations and the	wav	e equations, Conve	ergen	ce, derivatives	
Fourier tra	nsforms	ling Legendre, Hermit s, Sturm-Liouville prob en the Fourier transfo	lem	s, Discrete Fourier	rans	form, Mellin transfo			
Prerequisites (if any) Give course codes and		1 st M A T H 1 5	4	2 nd		3 rd		4 th	
check all that a applicable.	re	Consent of the Instructor Senior Standing Give others, if any.							
Co-requisites (if any)		1 st		2 nd		3 rd		4 th	
Course Type Check all that are applicable		☐ Must course for dept. ☐ Must course for other dept.(s) ☐ Elective course for dept. ☐ Elective course for other dept.(s)							
Course Clas		1 entage for each category.							
Category				Engineering & Architectural Sciences					
Percentage		70		30					

Part II. Detailed Course Information

Course Objectives

Maximum 100 words.

The main purpose of this course is to give some elementary properties of Fourier series and Fourier transforms. For this aim some partial differential equations are used and some applications are given for quantum mechanics. Moreover, some related transforms will be given such as the Mellin transform, the Laplace transform and discrete Fourier transform. Some lectures will also be devoted to introducing Sturm-Liouville equations and orthogonal polynomials that are suitable to apply Fourier transforms. Therefore after completing the lecture the students will be able to employ one of the most important theory in mathematics to some real-world applications.

Learning Outcomes

Explain the learning outcomes of the course. Maximum 10 items.

Students know the way to solve some partial differential equations with the aid of Fourier transforms, will be able to apply Fourier transforms to some Sturm-Liouville boundary-value problems, and will know some orthogonal polynomials on the real line. Moreover, they will learn the relation between Laplace transforms and Fourier transforms.

Textbook(s) List the textbook(s), if any, and other related main course material.								
Author(s)	Title	Publisher	Publication Year	ISBN				
Anders Vretblad	Fourier Analysis and Its Applications	Springer	2003	0-387-00836-5				
Gerald B. Folland	Fourier Analysis and Its Applications	Books/Cole Publishing Company	1992	0-8218-4790-2				

Reference Books List, if any, other reference books to be used as supplementary material.								
Author(s)	Title	Publisher	Publication Year	ISBN				
Murray R. Spiegel	Fourier Analysis with Applications to Boundary Value Problems	McGraw-Hill Book Company	1974	0070602190				

Teaching Policy

Explain how you will organize the course (lectures, laboratories, tutorials, studio work, seminars, etc.)

Attendance to the lectures is compulsory.

Laboratory/Studio Work

Give the number of laboratory/studio hours required per week, if any, to do supervised laboratory/studio work and list the names of the laboratories/studios in which these sessions will be conducted.

Computer Usage

Briefly describe the computer usage and the hardware/software requirements for the course

	Course Outline List the weekly topics to be covered.				
Week	Topic(s)				
1	Introduction (Heat equation, separation of variables technique)				
2	Fourier series, convergence of Fourier series				
3	Derivatives and integrals of Fourier series				
4	Inhomogeneous heat equation, inhomogeneous wave equation				
5	Orthogonal set of functions				
6	Orthogonal polynomials (Legendre polynomials, Hermite polynomials)				
7	Orthogonal polynomials (Laguerre polynomials)				
8	Fourier transforms, The Riemann-Lebesgue Lemma)				
9	Inverse Fourier transforms				
10	Fourier transforms on L ² , The Plancherel theorem				
11	Some applications of Fourier transforms on PDEs and quantum mechanics				
12	Fourier transforms and Sturm-Liouville problems				
13	Transforms related to Fourier transforms (Discrete Fourier transforms, Mellin transforms)				
14	Connection of Fourier transforms with the Laplace transforms				

Grading Policy List the assessment tools and their percentages that may give an idea about their relative importance to the end-of-semester grade.									
Assessment Tool	ssment Tool Quantity Percentage Assessment Tool Quantity Percentage Assessment Tool Quantity		Percentage						
Homework	2	20	Case Study			Attendance			
Quiz(es)			Lab Work			Field Study			
Midterm Exam	2	40	Classroom Participation			Project			
Term Paper			Oral Presentation			Final Exam	1	40	

Activity	Quantity	Duration (hours)	Total Workload (hours)
Attending Lectures (weekly basis)	14	3	42
Attending Labs/Recitations (weekly basis)			
Compilation and finalization of course/lecture notes (weekly basis)	14	1	14
Collection and selection of relevant material (once)	1	10	10
Self study of relevant material (weekly basis)	11	1	11
Take-home assignments	2	1	2
Preparation for quizzes			
Preparation for mid-term exams (including the duration of the exams)	2	13	26
Preparation of term paper/case-study report (including oral presentation)			
Preparation of term project/field study report (including oral presentation)			
Preparation for final exam (including the duration of the exam)	1	20	20
	VORKLOAD / 25	125/25	
		ECTS Credit	5

Total Workloads are calculated automatically by formulas. To update all the formulas in the document first press CTRL+A and then press F9.

Program Qualifications vs. Learning Outcomes Consider the program qualifications given below as determined in terms of learning outcomes and acquisition of capabilities for all the courses in the curriculum. Look at the learning outcomes of this course given above. Relate these two using the Likert Scale by marking with X in one of the five choices at the right.

No	Drawner Qualifications	Contribution			tion		
NO	Program Qualifications	0	1	2	3	4	
1	Adequate knowledge in mathematics; ability to use applied and theoretical information in these areas to solve pure and applied mathematics problems.					х	
2	Ability to use modern computational tools to analyze an abstract or real life problem		x				
3	Adequate knowledge in theoretical and historical background in mathematics			х			
4	Ability to work individually and in teams efficiently, ability to collaborate effectively in teams to analyze complex systems from intra-disciplinary and multi-disciplinary areas			х			
5	Ability to communicate effectively in English about technical subjects, both orally and in writing				x		
6	Ability to use, develop and implement new experiments and algorithms to solve scientific, engineering and financial problems			х			
7	Ability to analyze a mathematical problem using both analytical and numerical methods; use and compare theoretical and simulational methods to gain deeper insight					x	
8	Ability to report the findings, conclusions and interpretations related to a project in the area of pure and applied mathematics, ability to write technical reports, to prepare and conduct effective presentations				x		
9	Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to keep continuous self improvement				х		
10	Awareness of professional and ethical responsibility issues and their legal consequences					х	

Scale for contribution to a qualification: 0-none, 1-little, 2-moderate, 3-considerable, 4-highest